Files
modelscope/modelscope/pipelines/audio/voice_activity_detection_pipeline.py
zhifu.gzf 8b4e9dcdfb ngpu bug and rm easyasr
修复ngpu指定无效的问题;移除easyasr,全部涉及模型都下架了;将funasr版本限制为>=0.6.0
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/12933049
* ngpu bug and rm easyasr
2023-06-13 16:36:21 +08:00

256 lines
9.5 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
from typing import Any, Dict, List, Sequence, Tuple, Union
import json
import yaml
from funasr.utils import asr_utils
from modelscope.metainfo import Pipelines
from modelscope.models import Model
from modelscope.outputs import OutputKeys
from modelscope.pipelines.base import Pipeline
from modelscope.pipelines.builder import PIPELINES
from modelscope.utils.audio.audio_utils import (generate_scp_from_url,
update_local_model)
from modelscope.utils.constant import Frameworks, ModelFile, Tasks
from modelscope.utils.logger import get_logger
logger = get_logger()
__all__ = ['VoiceActivityDetectionPipeline']
@PIPELINES.register_module(
Tasks.voice_activity_detection, module_name=Pipelines.vad_inference)
class VoiceActivityDetectionPipeline(Pipeline):
"""Voice Activity Detection Inference Pipeline
use `model` to create a Voice Activity Detection pipeline.
Args:
model: A model instance, or a model local dir, or a model id in the model hub.
kwargs (dict, `optional`):
Extra kwargs passed into the preprocessor's constructor.
Example:
>>> from modelscope.pipelines import pipeline
>>> pipeline_vad = pipeline(
>>> task=Tasks.voice_activity_detection, model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch')
>>> audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.pcm'
>>> print(pipeline_vad(audio_in))
"""
def __init__(self,
model: Union[Model, str] = None,
ngpu: int = 1,
**kwargs):
"""use `model` to create an vad pipeline for prediction
"""
super().__init__(model=model, **kwargs)
config_path = os.path.join(model, ModelFile.CONFIGURATION)
self.cmd = self.get_cmd(config_path, kwargs, model)
from funasr.bin import vad_inference_launch
self.funasr_infer_modelscope = vad_inference_launch.inference_launch(
mode=self.cmd['mode'],
batch_size=self.cmd['batch_size'],
dtype=self.cmd['dtype'],
ngpu=ngpu,
seed=self.cmd['seed'],
num_workers=self.cmd['num_workers'],
log_level=self.cmd['log_level'],
key_file=self.cmd['key_file'],
vad_infer_config=self.cmd['vad_infer_config'],
vad_model_file=self.cmd['vad_model_file'],
vad_cmvn_file=self.cmd['vad_cmvn_file'],
**kwargs,
)
def __call__(self,
audio_in: Union[str, bytes],
audio_fs: int = None,
recog_type: str = None,
audio_format: str = None,
output_dir: str = None,
param_dict: dict = None,
**kwargs) -> Dict[str, Any]:
"""
Decoding the input audios
Args:
audio_in('str' or 'bytes'):
- A string containing a local path to a wav file
- A string containing a local path to a scp
- A string containing a wav url
- A bytes input
audio_fs('int'):
frequency of sample
recog_type('str'):
recog type for wav file or datasets file ('wav', 'test', 'dev', 'train')
audio_format('str'):
audio format ('pcm', 'scp', 'kaldi_ark', 'tfrecord')
output_dir('str'):
output dir
param_dict('dict'):
extra kwargs
Return:
A dictionary of result or a list of dictionary of result.
The dictionary contain the following keys:
- **text** ('str') --The vad result.
"""
self.audio_in = None
self.raw_inputs = None
self.recog_type = recog_type
self.audio_format = audio_format
self.audio_fs = None
checking_audio_fs = None
if output_dir is not None:
self.cmd['output_dir'] = output_dir
if param_dict is not None:
self.cmd['param_dict'] = param_dict
if isinstance(audio_in, str):
# for funasr code, generate wav.scp from url or local path
self.audio_in, self.raw_inputs = generate_scp_from_url(audio_in)
elif isinstance(audio_in, bytes):
self.audio_in = audio_in
self.raw_inputs = None
else:
import numpy
import torch
if isinstance(audio_in, torch.Tensor):
self.audio_in = None
self.raw_inputs = audio_in
elif isinstance(audio_in, numpy.ndarray):
self.audio_in = None
self.raw_inputs = audio_in
# set the sample_rate of audio_in if checking_audio_fs is valid
if checking_audio_fs is not None:
self.audio_fs = checking_audio_fs
if recog_type is None or audio_format is None:
self.recog_type, self.audio_format, self.audio_in = asr_utils.type_checking(
audio_in=self.audio_in,
recog_type=recog_type,
audio_format=audio_format)
if hasattr(asr_utils,
'sample_rate_checking') and self.audio_in is not None:
checking_audio_fs = asr_utils.sample_rate_checking(
self.audio_in, self.audio_format)
if checking_audio_fs is not None:
self.audio_fs = checking_audio_fs
if audio_fs is not None:
self.cmd['fs']['audio_fs'] = audio_fs
else:
self.cmd['fs']['audio_fs'] = self.audio_fs
output = self.forward(self.audio_in, **kwargs)
result = self.postprocess(output)
return result
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Postprocessing
"""
rst = {}
for i in range(len(inputs)):
if i == 0:
text = inputs[0]['value']
if len(text) > 0:
rst[OutputKeys.TEXT] = text
else:
rst[inputs[i]['key']] = inputs[i]['value']
return rst
def get_cmd(self, config_path, extra_args, model_path) -> Dict[str, Any]:
model_cfg = json.loads(open(config_path).read())
model_dir = os.path.dirname(config_path)
# generate inference command
vad_model_path = os.path.join(
model_dir, model_cfg['model']['model_config']['vad_model_name'])
vad_model_config = os.path.join(
model_dir, model_cfg['model']['model_config']['vad_model_config'])
vad_cmvn_file = os.path.join(
model_dir, model_cfg['model']['model_config']['vad_mvn_file'])
mode = model_cfg['model']['model_config']['mode']
frontend_conf = None
if os.path.exists(vad_model_config):
config_file = open(vad_model_config, encoding='utf-8')
root = yaml.full_load(config_file)
config_file.close()
if 'frontend_conf' in root:
frontend_conf = root['frontend_conf']
update_local_model(model_cfg['model']['model_config'], model_path,
extra_args)
cmd = {
'mode': mode,
'batch_size': 1,
'dtype': 'float32',
'ngpu': 1, # 0: only CPU, ngpu>=1: gpu number if cuda is available
'seed': 0,
'num_workers': 0,
'log_level': 'ERROR',
'key_file': None,
'vad_infer_config': vad_model_config,
'vad_model_file': vad_model_path,
'vad_cmvn_file': vad_cmvn_file,
'output_dir': None,
'param_dict': None,
'fs': {
'model_fs': None,
'audio_fs': None
}
}
if frontend_conf is not None and 'fs' in frontend_conf:
cmd['fs']['model_fs'] = frontend_conf['fs']
user_args_dict = [
'output_dir', 'batch_size', 'mode', 'ngpu', 'param_dict',
'num_workers', 'fs'
]
for user_args in user_args_dict:
if user_args in extra_args:
if extra_args.get(user_args) is not None:
cmd[user_args] = extra_args[user_args]
del extra_args[user_args]
return cmd
def forward(self, audio_in: Dict[str, Any], **kwargs) -> Dict[str, Any]:
"""Decoding
"""
logger.info('VAD Processing ...')
# generate inputs
data_cmd: Sequence[Tuple[str, str, str]]
if isinstance(self.audio_in, bytes):
data_cmd = [self.audio_in, 'speech', 'bytes']
elif isinstance(self.audio_in, str):
data_cmd = [self.audio_in, 'speech', 'sound']
elif self.raw_inputs is not None:
data_cmd = None
self.cmd['name_and_type'] = data_cmd
self.cmd['raw_inputs'] = self.raw_inputs
self.cmd['audio_in'] = self.audio_in
vad_result = self.run_inference(self.cmd, **kwargs)
return vad_result
def run_inference(self, cmd, **kwargs):
vad_result = []
if self.framework == Frameworks.torch:
vad_result = self.funasr_infer_modelscope(
data_path_and_name_and_type=cmd['name_and_type'],
raw_inputs=cmd['raw_inputs'],
output_dir_v2=cmd['output_dir'],
fs=cmd['fs'],
param_dict=cmd['param_dict'],
**kwargs)
else:
raise ValueError('model type is mismatching')
return vad_result