Files
modelscope/docs
xingjun.wxj e02a260c93 Refactor the task_datasets module
Refactor the task_datasets module:

1. Add new module modelscope.msdatasets.dataset_cls.custom_datasets.
2. Add new function: modelscope.msdatasets.ms_dataset.MsDataset.to_custom_dataset().
2. Add calling to_custom_dataset() func in MsDataset.load() to adapt new custom_datasets module.
3. Refactor the pipeline for loading custom dataset: 
	1) Only use MsDataset.load() function to load the custom datasets.
	2) Combine MsDataset.load() with class EpochBasedTrainer.
4. Add new entry func for building datasets in EpochBasedTrainer: see modelscope.trainers.trainer.EpochBasedTrainer.build_dataset()
5. Add new func to build the custom dataset from model configuration, see: modelscope.trainers.trainer.EpochBasedTrainer.build_dataset_from_cfg()
6. Add new registry function for building custom datasets, see: modelscope.msdatasets.dataset_cls.custom_datasets.builder.build_custom_dataset()
7. Refine the class SiameseUIETrainer to adapt the new custom_datasets module.
8. Add class TorchCustomDataset as a superclass for custom datasets classes.
9. To move modules/classes/functions:
	1) Move module msdatasets.audio to custom_datasets
	2) Move module msdatasets.cv to custom_datasets
	3) Move module bad_image_detecting to custom_datasets
	4) Move module damoyolo to custom_datasets
	5) Move module face_2d_keypoints to custom_datasets
	6) Move module hand_2d_keypoints to custom_datasets
	7) Move module human_wholebody_keypoint to custom_datasets
	8) Move module image_classification to custom_datasets
	9) Move module image_inpainting to custom_datasets
	10) Move module image_portrait_enhancement to custom_datasets
	11) Move module image_quality_assessment_degradation to custom_datasets
	12) Move module image_quality_assmessment_mos to custom_datasets
	13) Move class LanguageGuidedVideoSummarizationDataset to custom_datasets
	14) Move class MGeoRankingDataset to custom_datasets
	15) Move module movie_scene_segmentation custom_datasets
	16) Move module object_detection to custom_datasets
	17) Move module referring_video_object_segmentation to custom_datasets
	18) Move module sidd_image_denoising to custom_datasets
	19) Move module video_frame_interpolation to custom_datasets
	20) Move module video_stabilization to custom_datasets
	21) Move module video_super_resolution to custom_datasets
	22) Move class GoproImageDeblurringDataset to custom_datasets
	23) Move class EasyCVBaseDataset to custom_datasets
	24) Move class ImageInstanceSegmentationCocoDataset to custom_datasets
	25) Move class RedsImageDeblurringDataset to custom_datasets
	26) Move class TextRankingDataset to custom_datasets
	27) Move class VecoDataset to custom_datasets
	28) Move class VideoSummarizationDataset to custom_datasets
10. To delete modules/functions/classes:
	1) Del module task_datasets
	2) Del to_task_dataset() in EpochBasedTrainer
	3) Del build_dataset() in EpochBasedTrainer and renew a same name function.
11. Rename class Datasets to CustomDatasets in metainfo.py

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11872747
2023-03-10 09:03:32 +08:00
..
2023-03-10 09:03:32 +08:00
2023-01-31 01:23:56 +00:00

maintain docs

  1. build docs

    # in root directory:
    make docs
    
  2. doc string format

    We adopt the google style docstring format as the standard, please refer to the following documents.

    1. Google Python style guide docstring link
    2. Google docstring example link
    3. sampletorch.nn.modules.conv link
    4. load function as an example
    def load(file, file_format=None, **kwargs):
        """Load data from json/yaml/pickle files.
    
        This method provides a unified api for loading data from serialized files.
    
        Args:
            file (str or :obj:`Path` or file-like object): Filename or a file-like
                object.
            file_format (str, optional): If not specified, the file format will be
                inferred from the file extension, otherwise use the specified one.
                Currently supported formats include "json", "yaml/yml".
    
        Examples:
            >>> load('/path/of/your/file')  # file is stored in disk
            >>> load('https://path/of/your/file')  # file is stored on internet
            >>> load('oss://path/of/your/file')  # file is stored in petrel
    
        Returns:
            The content from the file.
        """