Files
modelscope/tests/pipelines/test_fill_mask.py
zhangzhicheng.zzc d721fabb34 [to #42322933]bert with sequence classification / token classification/ fill mask refactor
1.新增支持原始bert模型(非easynlp的 backbone prefix版本)
2.支持bert的在sequence classification/fill mask /token classification上的backbone head形式
3.统一了sequence classification几个任务的pipeline到一个类
4.fill mask 支持backbone head形式
5.token classification的几个子任务(ner,word seg, part of speech)的preprocessor 统一到了一起TokenClassificationPreprocessor
6. sequence classification的几个子任务(single classification, pair classification)的preprocessor 统一到了一起SequenceClassificationPreprocessor
7. 改动register中 cls的group_key 赋值位置,之前的group_key在多个decorators的情况下,会被覆盖,obj_cls的group_key信息不正确
8. 基于backbone head形式将 原本group_key和 module同名的情况尝试做调整,如下在modelscope/pipelines/nlp/sequence_classification_pipeline.py 中 
原本
 @PIPELINES.register_module(
    Tasks.sentiment_classification, module_name=Pipelines.sentiment_classification)
改成
@PIPELINES.register_module(
    Tasks.text_classification, module_name=Pipelines.sentiment_classification)
相应的configuration.json也有改动,这样的改动更符合任务和pipline(子任务)的关系。
8. 其他相应改动为支持上述功能
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10041463
2022-09-27 23:08:33 +08:00

189 lines
8.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from regex import R
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import (BertForMaskedLM, StructBertForMaskedLM,
VecoForMaskedLM)
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import FillMaskPipeline
from modelscope.preprocessors import NLPPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.demo_utils import DemoCompatibilityCheck
from modelscope.utils.regress_test_utils import MsRegressTool
from modelscope.utils.test_utils import test_level
class FillMaskTest(unittest.TestCase, DemoCompatibilityCheck):
def setUp(self) -> None:
self.task = Tasks.fill_mask
self.model_id = 'damo/nlp_veco_fill-mask-large'
model_id_sbert = {
'zh': 'damo/nlp_structbert_fill-mask_chinese-large',
'en': 'damo/nlp_structbert_fill-mask_english-large'
}
model_id_veco = 'damo/nlp_veco_fill-mask-large'
model_id_bert = 'damo/nlp_bert_fill-mask_chinese-base'
ori_texts = {
'zh':
'段誉轻挥折扇,摇了摇头,说道:“你师父是你的师父,你师父可不是我的师父。'
'你师父差得动你,你师父可差不动我。',
'en':
'Everything in what you call reality is really just a reflection of your '
'consciousness. Your whole universe is just a mirror reflection of your story.'
}
test_inputs = {
'zh':
'段誉轻[MASK]折扇,摇了摇[MASK][MASK]道:“你师父是你的[MASK][MASK],你'
'师父可不是[MASK]的师父。你师父差得动你,你师父可[MASK]不动我。',
'en':
'Everything in [MASK] you call reality is really [MASK] a reflection of your '
'[MASK]. Your [MASK] universe is just a mirror [MASK] of your story.'
}
regress_tool = MsRegressTool(baseline=False)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_by_direct_model_download(self):
# sbert
for language in ['zh']:
model_dir = snapshot_download(self.model_id_sbert[language])
preprocessor = NLPPreprocessor(
model_dir, first_sequence='sentence', second_sequence=None)
model = StructBertForMaskedLM.from_pretrained(model_dir)
pipeline1 = FillMaskPipeline(model, preprocessor)
pipeline2 = pipeline(
Tasks.fill_mask, model=model, preprocessor=preprocessor)
ori_text = self.ori_texts[language]
test_input = self.test_inputs[language]
print(
f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: '
f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n'
)
# veco
model_dir = snapshot_download(self.model_id_veco)
preprocessor = NLPPreprocessor(
model_dir, first_sequence='sentence', second_sequence=None)
model = VecoForMaskedLM.from_pretrained(model_dir)
pipeline1 = FillMaskPipeline(model, preprocessor)
pipeline2 = pipeline(
Tasks.fill_mask, model=model, preprocessor=preprocessor)
for language in ['zh', 'en']:
ori_text = self.ori_texts[language]
test_input = self.test_inputs[language].replace('[MASK]', '<mask>')
print(
f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: '
f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n'
)
# bert
language = 'zh'
model_dir = snapshot_download(self.model_id_bert, revision='beta')
preprocessor = NLPPreprocessor(
model_dir, first_sequence='sentence', second_sequence=None)
model = Model.from_pretrained(model_dir)
pipeline1 = FillMaskPipeline(model, preprocessor)
pipeline2 = pipeline(
Tasks.fill_mask, model=model, preprocessor=preprocessor)
ori_text = self.ori_texts[language]
test_input = self.test_inputs[language]
print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: '
f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
# sbert
for language in ['zh']:
print(self.model_id_sbert[language])
model = Model.from_pretrained(self.model_id_sbert[language])
preprocessor = NLPPreprocessor(
model.model_dir,
first_sequence='sentence',
second_sequence=None)
pipeline_ins = pipeline(
task=Tasks.fill_mask, model=model, preprocessor=preprocessor)
with self.regress_tool.monitor_module_single_forward(
pipeline_ins.model, f'fill_mask_sbert_{language}'):
print(
f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: '
f'{pipeline_ins(self.test_inputs[language])}\n')
# veco
model = Model.from_pretrained(self.model_id_veco)
preprocessor = NLPPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
pipeline_ins = pipeline(
Tasks.fill_mask, model=model, preprocessor=preprocessor)
for language in ['zh', 'en']:
ori_text = self.ori_texts[language]
test_input = self.test_inputs[language].replace('[MASK]', '<mask>')
with self.regress_tool.monitor_module_single_forward(
pipeline_ins.model, f'fill_mask_veco_{language}'):
print(
f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: '
f'{pipeline_ins(test_input)}\n')
# bert
language = 'zh'
model = Model.from_pretrained(self.model_id_bert, revision='beta')
preprocessor = NLPPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
pipeline_ins = pipeline(
Tasks.fill_mask, model=model, preprocessor=preprocessor)
pipeline_ins.model, f'fill_mask_bert_{language}'
print(
f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: '
f'{pipeline_ins(self.test_inputs[language])}\n')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
# veco
pipeline_ins = pipeline(task=Tasks.fill_mask, model=self.model_id_veco)
for language in ['zh', 'en']:
ori_text = self.ori_texts[language]
test_input = self.test_inputs[language].replace('[MASK]', '<mask>')
print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: '
f'{pipeline_ins(test_input)}\n')
# structBert
language = 'zh'
pipeline_ins = pipeline(
task=Tasks.fill_mask, model=self.model_id_sbert[language])
print(
f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: '
f'{pipeline_ins(self.test_inputs[language])}\n')
# Bert
language = 'zh'
pipeline_ins = pipeline(
task=Tasks.fill_mask,
model=self.model_id_bert,
model_revision='beta')
print(
f'\nori_text: {self.ori_texts[language]}\ninput: {self.test_inputs[language]}\npipeline: '
f'{pipeline_ins(self.test_inputs[language])}\n')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.fill_mask)
language = 'en'
ori_text = self.ori_texts[language]
test_input = self.test_inputs[language].replace('[MASK]', '<mask>')
print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: '
f'{pipeline_ins(test_input)}\n')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_demo_compatibility(self):
self.compatibility_check()
if __name__ == '__main__':
unittest.main()