Files
modelscope/modelscope/utils/service_utils.py
yuze.zyz 4dca4773db Support csanmt exporting and refactor some code
1. Support csanmt exporting to savedmodel format
2. Create a new base class for text-ranking preprocessors, and move some parameters of mgeo_ranking_preprocessor to init method
3. Avoid Model & Preprocessor classes coupled with pytorch
4. Regression test supports comparing only model output
5. Support zero-shot exporting to onnx and torchscript

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11522461
2023-02-10 05:15:04 +00:00

179 lines
5.8 KiB
Python

import base64
import mimetypes
from io import BytesIO
import json
import numpy as np
import requests
from modelscope.outputs import TASK_OUTPUTS, OutputKeys
from modelscope.pipeline_inputs import TASK_INPUTS, InputType
# service data decoder func decodes data from network and convert it to pipeline's input
# for example
def ExampleDecoder(data):
# Assuming the pipeline inputs is a dict contains an image and a text,
# to decode the data from network we decode the image as base64
data_json = json.loads(data)
# data: {"image": "xxxxxxxx=="(base64 str), "text": "a question"}
# pipeline(inputs) as follows:
# pipeline({'image': image, 'text': text})
inputs = {
'image': decode_base64_to_image(data_json.get('image')),
'text': data_json.get('text')
}
return inputs
# service data encoder func encodes data from pipeline outputs and convert to network response (such as json)
# for example
def ExampleEncoder(data):
# Assuming the pipeline outputs is a dict contains an image and a text,
# and transmit it through network, this func encode image to base64 and dumps into json
# data (for e.g. python dict):
# {"image": a numpy array represents a image, "text": "output"}
image = data['image']
text = data['text']
data = {'image': encode_array_to_img_base64(image), 'text': text}
return json.dumps(data, cls=NumpyEncoder)
CustomEncoder = {
# Tasks.visual_question_answering: ExampleEncoder
}
CustomDecoder = {
# Tasks.visual_question_answering: ExampleDecoder
}
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.integer):
return int(obj)
return json.JSONEncoder.default(self, obj)
def get_extension(encoding):
encoding = encoding.replace('audio/wav', 'audio/x-wav')
tp = mimetypes.guess_type(encoding)[0]
if tp == 'audio/flac': # flac is not supported by mimetypes
return 'flac'
extension = mimetypes.guess_extension(tp)
if extension is not None and extension.startswith('.'):
extension = extension[1:]
return extension
def get_mimetype(filename):
mimetype = mimetypes.guess_type(filename)[0]
if mimetype is not None:
mimetype = mimetype.replace('x-wav', 'wav').replace('x-flac', 'flac')
return mimetype
def decode_base64_to_binary(encoding):
extension = get_extension(encoding)
data = encoding.split(',')[1]
return base64.b64decode(data), extension
def decode_base64_to_image(encoding):
from PIL import Image
content = encoding.split(';')[1]
image_encoded = content.split(',')[1]
return Image.open(BytesIO(base64.b64decode(image_encoded)))
def encode_array_to_img_base64(image_array):
from PIL import Image
with BytesIO() as output_bytes:
pil_image = Image.fromarray(image_array.astype(np.uint8))
pil_image.save(output_bytes, 'PNG')
bytes_data = output_bytes.getvalue()
base64_str = str(base64.b64encode(bytes_data), 'utf-8')
return 'data:image/png;base64,' + base64_str
def encode_pcm_to_base64(bytes_data):
from scipy.io.wavfile import write
with BytesIO() as out_mem_file:
write(out_mem_file, 16000, bytes_data)
base64_str = str(base64.b64encode(out_mem_file.getvalue()), 'utf-8')
return 'data:audio/pcm;base64,' + base64_str
def encode_url_to_base64(url):
encoded_string = base64.b64encode(requests.get(url).content)
base64_str = str(encoded_string, 'utf-8')
mimetype = get_mimetype(url)
return ('data:' + (mimetype if mimetype is not None else '') + ';base64,'
+ base64_str)
def encode_file_to_base64(f):
with open(f, 'rb') as file:
encoded_string = base64.b64encode(file.read())
base64_str = str(encoded_string, 'utf-8')
mimetype = get_mimetype(f)
return ('data:' + (mimetype if mimetype is not None else '')
+ ';base64,' + base64_str)
def encode_url_or_file_to_base64(path):
try:
requests.get(path)
return encode_url_to_base64(path)
except (requests.exceptions.MissingSchema,
requests.exceptions.InvalidSchema):
return encode_file_to_base64(path)
def service_data_decoder(task, data):
if CustomDecoder.get(task) is not None:
return CustomDecoder[task](data)
input_type = TASK_INPUTS[task]
input_data = data.decode('utf-8')
if input_type == InputType.IMAGE:
return decode_base64_to_image(input_data)
elif input_type == InputType.AUDIO:
return decode_base64_to_binary(input_data)[0]
elif input_type == InputType.TEXT:
return input_data
elif isinstance(input_type, dict):
input_data = {}
for key, val in input_type.items():
if val == InputType.IMAGE:
input_data[key] = decode_base64_to_image(data[key])
elif val == InputType.AUDIO:
input_data[key] = decode_base64_to_binary(data[key])[0]
elif val == InputType.TEXT:
input_data[key] = data[key]
return input_data
def service_data_encoder(task, data):
if CustomEncoder.get(task) is not None:
return CustomEncoder[task](data)
output_keys = TASK_OUTPUTS[task]
result = data
for output_key in output_keys:
if output_key == OutputKeys.OUTPUT_IMG:
result[OutputKeys.OUTPUT_IMG] = encode_array_to_img_base64(
data[OutputKeys.OUTPUT_IMG][..., ::-1])
elif output_key == OutputKeys.OUTPUT_PCM:
result[OutputKeys.OUTPUT_PCM] = encode_pcm_to_base64(
data[OutputKeys.OUTPUT_PCM])
result = bytes(json.dumps(result, cls=NumpyEncoder), encoding='utf8')
return result