mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-24 03:59:23 +01:00
1. Support csanmt exporting to savedmodel format 2. Create a new base class for text-ranking preprocessors, and move some parameters of mgeo_ranking_preprocessor to init method 3. Avoid Model & Preprocessor classes coupled with pytorch 4. Regression test supports comparing only model output 5. Support zero-shot exporting to onnx and torchscript Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11522461
179 lines
5.8 KiB
Python
179 lines
5.8 KiB
Python
import base64
|
|
import mimetypes
|
|
from io import BytesIO
|
|
|
|
import json
|
|
import numpy as np
|
|
import requests
|
|
|
|
from modelscope.outputs import TASK_OUTPUTS, OutputKeys
|
|
from modelscope.pipeline_inputs import TASK_INPUTS, InputType
|
|
|
|
|
|
# service data decoder func decodes data from network and convert it to pipeline's input
|
|
# for example
|
|
def ExampleDecoder(data):
|
|
# Assuming the pipeline inputs is a dict contains an image and a text,
|
|
# to decode the data from network we decode the image as base64
|
|
data_json = json.loads(data)
|
|
# data: {"image": "xxxxxxxx=="(base64 str), "text": "a question"}
|
|
# pipeline(inputs) as follows:
|
|
# pipeline({'image': image, 'text': text})
|
|
inputs = {
|
|
'image': decode_base64_to_image(data_json.get('image')),
|
|
'text': data_json.get('text')
|
|
}
|
|
return inputs
|
|
|
|
|
|
# service data encoder func encodes data from pipeline outputs and convert to network response (such as json)
|
|
# for example
|
|
def ExampleEncoder(data):
|
|
# Assuming the pipeline outputs is a dict contains an image and a text,
|
|
# and transmit it through network, this func encode image to base64 and dumps into json
|
|
# data (for e.g. python dict):
|
|
# {"image": a numpy array represents a image, "text": "output"}
|
|
image = data['image']
|
|
text = data['text']
|
|
data = {'image': encode_array_to_img_base64(image), 'text': text}
|
|
return json.dumps(data, cls=NumpyEncoder)
|
|
|
|
|
|
CustomEncoder = {
|
|
# Tasks.visual_question_answering: ExampleEncoder
|
|
}
|
|
|
|
CustomDecoder = {
|
|
# Tasks.visual_question_answering: ExampleDecoder
|
|
}
|
|
|
|
|
|
class NumpyEncoder(json.JSONEncoder):
|
|
|
|
def default(self, obj):
|
|
if isinstance(obj, np.ndarray):
|
|
return obj.tolist()
|
|
|
|
if isinstance(obj, np.floating):
|
|
return float(obj)
|
|
|
|
if isinstance(obj, np.integer):
|
|
return int(obj)
|
|
|
|
return json.JSONEncoder.default(self, obj)
|
|
|
|
|
|
def get_extension(encoding):
|
|
encoding = encoding.replace('audio/wav', 'audio/x-wav')
|
|
tp = mimetypes.guess_type(encoding)[0]
|
|
if tp == 'audio/flac': # flac is not supported by mimetypes
|
|
return 'flac'
|
|
extension = mimetypes.guess_extension(tp)
|
|
if extension is not None and extension.startswith('.'):
|
|
extension = extension[1:]
|
|
return extension
|
|
|
|
|
|
def get_mimetype(filename):
|
|
mimetype = mimetypes.guess_type(filename)[0]
|
|
if mimetype is not None:
|
|
mimetype = mimetype.replace('x-wav', 'wav').replace('x-flac', 'flac')
|
|
return mimetype
|
|
|
|
|
|
def decode_base64_to_binary(encoding):
|
|
extension = get_extension(encoding)
|
|
data = encoding.split(',')[1]
|
|
return base64.b64decode(data), extension
|
|
|
|
|
|
def decode_base64_to_image(encoding):
|
|
from PIL import Image
|
|
content = encoding.split(';')[1]
|
|
image_encoded = content.split(',')[1]
|
|
return Image.open(BytesIO(base64.b64decode(image_encoded)))
|
|
|
|
|
|
def encode_array_to_img_base64(image_array):
|
|
from PIL import Image
|
|
with BytesIO() as output_bytes:
|
|
pil_image = Image.fromarray(image_array.astype(np.uint8))
|
|
pil_image.save(output_bytes, 'PNG')
|
|
bytes_data = output_bytes.getvalue()
|
|
base64_str = str(base64.b64encode(bytes_data), 'utf-8')
|
|
return 'data:image/png;base64,' + base64_str
|
|
|
|
|
|
def encode_pcm_to_base64(bytes_data):
|
|
from scipy.io.wavfile import write
|
|
with BytesIO() as out_mem_file:
|
|
write(out_mem_file, 16000, bytes_data)
|
|
base64_str = str(base64.b64encode(out_mem_file.getvalue()), 'utf-8')
|
|
return 'data:audio/pcm;base64,' + base64_str
|
|
|
|
|
|
def encode_url_to_base64(url):
|
|
encoded_string = base64.b64encode(requests.get(url).content)
|
|
base64_str = str(encoded_string, 'utf-8')
|
|
mimetype = get_mimetype(url)
|
|
return ('data:' + (mimetype if mimetype is not None else '') + ';base64,'
|
|
+ base64_str)
|
|
|
|
|
|
def encode_file_to_base64(f):
|
|
with open(f, 'rb') as file:
|
|
encoded_string = base64.b64encode(file.read())
|
|
base64_str = str(encoded_string, 'utf-8')
|
|
mimetype = get_mimetype(f)
|
|
return ('data:' + (mimetype if mimetype is not None else '')
|
|
+ ';base64,' + base64_str)
|
|
|
|
|
|
def encode_url_or_file_to_base64(path):
|
|
try:
|
|
requests.get(path)
|
|
return encode_url_to_base64(path)
|
|
except (requests.exceptions.MissingSchema,
|
|
requests.exceptions.InvalidSchema):
|
|
return encode_file_to_base64(path)
|
|
|
|
|
|
def service_data_decoder(task, data):
|
|
if CustomDecoder.get(task) is not None:
|
|
return CustomDecoder[task](data)
|
|
input_type = TASK_INPUTS[task]
|
|
input_data = data.decode('utf-8')
|
|
if input_type == InputType.IMAGE:
|
|
return decode_base64_to_image(input_data)
|
|
elif input_type == InputType.AUDIO:
|
|
return decode_base64_to_binary(input_data)[0]
|
|
elif input_type == InputType.TEXT:
|
|
return input_data
|
|
elif isinstance(input_type, dict):
|
|
input_data = {}
|
|
for key, val in input_type.items():
|
|
if val == InputType.IMAGE:
|
|
input_data[key] = decode_base64_to_image(data[key])
|
|
elif val == InputType.AUDIO:
|
|
input_data[key] = decode_base64_to_binary(data[key])[0]
|
|
elif val == InputType.TEXT:
|
|
input_data[key] = data[key]
|
|
|
|
return input_data
|
|
|
|
|
|
def service_data_encoder(task, data):
|
|
if CustomEncoder.get(task) is not None:
|
|
return CustomEncoder[task](data)
|
|
output_keys = TASK_OUTPUTS[task]
|
|
result = data
|
|
for output_key in output_keys:
|
|
if output_key == OutputKeys.OUTPUT_IMG:
|
|
result[OutputKeys.OUTPUT_IMG] = encode_array_to_img_base64(
|
|
data[OutputKeys.OUTPUT_IMG][..., ::-1])
|
|
elif output_key == OutputKeys.OUTPUT_PCM:
|
|
result[OutputKeys.OUTPUT_PCM] = encode_pcm_to_base64(
|
|
data[OutputKeys.OUTPUT_PCM])
|
|
result = bytes(json.dumps(result, cls=NumpyEncoder), encoding='utf8')
|
|
return result
|