Files
modelscope/examples/pytorch/image_classification/finetune_image_classification.py
xingjun.wang 48c0d2a9af add 1.6
2023-05-22 10:53:18 +08:00

91 lines
2.4 KiB
Python

import os
from dataclasses import dataclass, field
from modelscope import MsDataset, TrainingArgs
from modelscope.metainfo import Trainers
from modelscope.trainers.builder import build_trainer
@dataclass(init=False)
class ImageClassificationTrainingArgs(TrainingArgs):
num_classes: int = field(
default=None,
metadata={
'cfg_node': [
'model.mm_model.head.num_classes',
'model.mm_model.train_cfg.augments.0.num_classes',
'model.mm_model.train_cfg.augments.1.num_classes'
],
'help':
'number of classes',
})
topk: tuple = field(
default=None,
metadata={
'cfg_node': [
'train.evaluation.metric_options.topk',
'evaluation.metric_options.topk'
],
'help':
'evaluation using topk, tuple format, eg (1,), (1,5)',
})
warmup_iters: str = field(
default=None,
metadata={
'cfg_node': 'train.lr_config.warmup_iters',
'help': 'The warmup iters',
})
def create_dataset(name, split):
namespace, dataset_name = name.split('/')
return MsDataset.load(
dataset_name, namespace=namespace, subset_name='default', split=split)
training_args = ImageClassificationTrainingArgs(
model='damo/cv_vit-base_image-classification_ImageNet-labels',
max_epochs=1,
lr=1e-4,
optimizer='AdamW',
warmup_iters=1,
topk=(1, )).parse_cli()
config, args = training_args.to_config()
def cfg_modify_fn(cfg):
if args.use_model_config:
cfg.merge_from_dict(config)
else:
cfg = config
return cfg
def train():
train_dataset = create_dataset(
training_args.train_dataset_name, split=training_args.train_split)
val_dataset = create_dataset(
training_args.val_dataset_name, split=training_args.val_split)
kwargs = dict(
model=args.model, # model id
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset, # validation dataset
cfg_modify_fn=cfg_modify_fn # callback to modify configuration
)
# in distributed training, specify pytorch launcher
if 'MASTER_ADDR' in os.environ:
kwargs['launcher'] = 'pytorch'
trainer = build_trainer(
name=Trainers.image_classification, default_args=kwargs)
# start to train
trainer.train()
if __name__ == '__main__':
train()