mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-17 00:37:43 +01:00
1932 lines
309 KiB
Plaintext
1932 lines
309 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## ChatGLM2 + Lora + Agent\n",
|
||
"ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:\n",
|
||
"\n",
|
||
"1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。\n",
|
||
"\n",
|
||
"2. 更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。\n",
|
||
"\n",
|
||
"3. 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"1. Ref: https://modelscope.cn/models/ZhipuAI/chatglm2-6b/summary\n",
|
||
"2. 以下脚本可以在2*A10环境下正常运行, 大概占用40G显存\n",
|
||
"3. python>=3.8"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 配置实验环境\n",
|
||
"The following code is copied from baichuan_sft.ipynb"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# !pip install modelscope -U\n",
|
||
"# !pip install numpy pandas matplotlib scikit-learn\n",
|
||
"# !pip install transformers datasets\n",
|
||
"# !conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia\n",
|
||
"# !pip install tqdm\n",
|
||
"# !pip install tensorboard\n",
|
||
"# !pip install torchmetrics\n",
|
||
"#\n",
|
||
"# !pip install numpy -U # Resolve torchmetrics dependencies and update numpy"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[2023-07-02 20:34:35,987] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 20:34:36,464 - modelscope - INFO - PyTorch version 2.0.1 Found.\n",
|
||
"2023-07-02 20:34:36,465 - modelscope - INFO - Loading ast index from /home/hackathon/.cache/modelscope/ast_indexer\n",
|
||
"2023-07-02 20:34:36,489 - modelscope - INFO - Loading done! Current index file version is 1.6.2, with md5 ddf811ee982377c1357284a2bfda3dec and a total number of 861 components indexed\n",
|
||
"2023-07-02 20:34:37,158 - modelscope - INFO - [0, 1]\n",
|
||
"2023-07-02 20:34:37,324 - modelscope - INFO - Using device: cuda:0,1\n",
|
||
"2023-07-02 20:34:37,326 - modelscope - INFO - Global seed set to 42\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from _common import *\n",
|
||
"device_ids = list(range(min(4, torch.cuda.device_count())))\n",
|
||
"logger.info(device_ids)\n",
|
||
"select_device(device_ids)\n",
|
||
"_ = seed_everything(42)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 导入Model, Tokenizer"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 20:34:37,660 - modelscope - INFO - Development mode use revision: v1.0.3\n",
|
||
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
|
||
"The tokenizer class you load from this checkpoint is 'ChatGLMTokenizer'. \n",
|
||
"The class this function is called from is 'ChatGLM2Tokenizer'.\n",
|
||
"2023-07-02 20:34:38,020 - modelscope - INFO - initialize model from /home/hackathon/.cache/modelscope/hub/ZhipuAI/chatglm2-6b\n",
|
||
"Failed to load cpm_kernels:No module named 'cpm_kernels'\n",
|
||
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function.\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "51826d090fb740e0a7d514e543af843b",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 20:34:45,151 - modelscope - INFO - {'<bos>': 1, '<eos>': 2, '<pad>': 2}\n",
|
||
"2023-07-02 20:34:45,152 - modelscope - INFO - bos_token_id: 1, eos_token_id: 2, pad_token_id: 2\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"model_id = \"ZhipuAI/chatglm2-6b\"\n",
|
||
"model_revision = \"v1.0.3\"\n",
|
||
"WORK_DIR = \"runs/chatglm2\"\n",
|
||
"LORA_TARGET_MODULES = [\"query_key_value\"]\n",
|
||
"#\n",
|
||
"model_dir = get_model_dir(model_id, model_revision)\n",
|
||
"model, tokenizer = get_chatglm2_model_tokenizer(model_dir)\n",
|
||
"# chatglm2 does not support gradient_checkpointing\n",
|
||
"GRADIENT_CHECKPOINTING = False\n",
|
||
"if GRADIENT_CHECKPOINTING:\n",
|
||
" model.gradient_checkpointing_enable()\n",
|
||
" model.enable_input_require_grads()\n",
|
||
"logger.info(tokenizer.special_tokens)\n",
|
||
"if tokenizer.eos_token_id is None:\n",
|
||
" tokenizer.eos_token_id = tokenizer.pad_token_id\n",
|
||
"if tokenizer.bos_token_id is None:\n",
|
||
" tokenizer.bos_token_id = 1\n",
|
||
"#\n",
|
||
"logger.info(f\"bos_token_id: {tokenizer.bos_token_id}, eos_token_id: {tokenizer.eos_token_id}, \"\n",
|
||
" f\"pad_token_id: {tokenizer.pad_token_id}\")"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 准备Lora\n",
|
||
"The following code is copied from baichun.ipynb"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 20:34:45,215 - modelscope - INFO - lora_config: LoRAConfig(rank=8, replace_modules=['query_key_value'], lora_alpha=32, lora_dropout=0.1, merge_weights=True, use_merged_linear=False, enable_lora=None, fan_in_fan_out=False, bias='none', only_lora_trainable=True, pretrained_weights=None)\n",
|
||
"2023-07-02 20:34:49,932 - modelscope - INFO - transformer.embedding.word_embeddings.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,933 - modelscope - INFO - transformer.encoder.layers.0.input_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,933 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,933 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.bias: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.lora_A: requires_grad=True\n",
|
||
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.self_attention.query_key_value.lora_B: requires_grad=True\n",
|
||
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.self_attention.dense.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,934 - modelscope - INFO - transformer.encoder.layers.0.post_attention_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,935 - modelscope - INFO - transformer.encoder.layers.0.mlp.dense_h_to_4h.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,935 - modelscope - INFO - transformer.encoder.layers.0.mlp.dense_4h_to_h.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,936 - modelscope - INFO - transformer.encoder.layers.1.input_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,936 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,936 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.bias: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,937 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.lora_A: requires_grad=True\n",
|
||
"2023-07-02 20:34:49,937 - modelscope - INFO - transformer.encoder.layers.1.self_attention.query_key_value.lora_B: requires_grad=True\n",
|
||
"2023-07-02 20:34:49,937 - modelscope - INFO - transformer.encoder.layers.1.self_attention.dense.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.1.post_attention_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.1.mlp.dense_h_to_4h.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.1.mlp.dense_4h_to_h.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,938 - modelscope - INFO - transformer.encoder.layers.2.input_layernorm.weight: requires_grad=False\n",
|
||
"2023-07-02 20:34:49,939 - modelscope - INFO - ...\n",
|
||
"2023-07-02 20:34:49,941 - modelscope - INFO - ChatGLM2ForConditionalGeneration: 6245.5337M Params (1.9497M Trainable), 0.0000M Buffers.\n",
|
||
"2023-07-02 20:34:49,942 - modelscope - INFO - device: cuda:0, dtype: torch.float16\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"ChatGLM2ForConditionalGeneration(\n",
|
||
" (transformer): ChatGLMModel(\n",
|
||
" (embedding): Embedding(\n",
|
||
" (word_embeddings): Embedding(65024, 4096)\n",
|
||
" )\n",
|
||
" (rotary_pos_emb): RotaryEmbedding()\n",
|
||
" (encoder): GLMTransformer(\n",
|
||
" (layers): ModuleList(\n",
|
||
" (0-27): 28 x GLMBlock(\n",
|
||
" (input_layernorm): RMSNorm()\n",
|
||
" (self_attention): SelfAttention(\n",
|
||
" (query_key_value): Linear(\n",
|
||
" in_features=4096, out_features=4608, bias=True\n",
|
||
" (lora_dropout): Dropout(p=0.1, inplace=False)\n",
|
||
" )\n",
|
||
" (core_attention): CoreAttention(\n",
|
||
" (attention_dropout): Dropout(p=0.0, inplace=False)\n",
|
||
" )\n",
|
||
" (dense): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
||
" )\n",
|
||
" (post_attention_layernorm): RMSNorm()\n",
|
||
" (mlp): MLP(\n",
|
||
" (dense_h_to_4h): Linear(in_features=4096, out_features=27392, bias=False)\n",
|
||
" (dense_4h_to_h): Linear(in_features=13696, out_features=4096, bias=False)\n",
|
||
" )\n",
|
||
" )\n",
|
||
" )\n",
|
||
" (final_layernorm): RMSNorm()\n",
|
||
" )\n",
|
||
" (output_layer): Linear(in_features=4096, out_features=65024, bias=False)\n",
|
||
" )\n",
|
||
")"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"LORA_RANK = 8\n",
|
||
"LORA_ALPHA = 32\n",
|
||
"LORA_DROPOUT_P = 0.1\n",
|
||
"lora_config = LoRAConfig(\n",
|
||
" replace_modules=LORA_TARGET_MODULES,\n",
|
||
" rank=LORA_RANK,\n",
|
||
" lora_alpha=LORA_ALPHA,\n",
|
||
" lora_dropout=LORA_DROPOUT_P)\n",
|
||
"logger.info(f\"lora_config: {lora_config}\")\n",
|
||
"Swift.prepare_model(model, lora_config)\n",
|
||
"#\n",
|
||
"show_freeze_layers(model)\n",
|
||
"print_model_info(model)\n",
|
||
"_p = list(model.parameters())[100]\n",
|
||
"logger.info(f\"device: {_p.device}, dtype: {_p.dtype}\")\n",
|
||
"model.bfloat16()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 导入Dataset\n",
|
||
"The following code is copied from baichuan_sft.ipynb"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 20:34:50,040 - modelscope - INFO - No subset_name specified, defaulting to the default\n",
|
||
"2023-07-02 20:34:50,479 - modelscope - WARNING - Reusing dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
|
||
"2023-07-02 20:34:50,479 - modelscope - INFO - Generating dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
|
||
"2023-07-02 20:34:50,480 - modelscope - INFO - Reusing cached meta-data file: /home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files/8c9e7b1aa666c8840cb938d877f2b99f\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "dac0fb3841854f6f867f0c639c6b2176",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading data files: 0it [00:00, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "beada7f3eb734a6485034e666e60285f",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Extracting data files: 0it [00:00, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"100%|██████████| 5036/5036 [00:12<00:00, 403.83it/s]\n",
|
||
"2023-07-02 20:35:03,823 - modelscope - INFO - No subset_name specified, defaulting to the default\n",
|
||
"2023-07-02 20:35:04,269 - modelscope - WARNING - Reusing dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
|
||
"2023-07-02 20:35:04,270 - modelscope - INFO - Generating dataset ms_hackathon_23_agent_train_dev (/home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files)\n",
|
||
"2023-07-02 20:35:04,270 - modelscope - INFO - Reusing cached meta-data file: /home/hackathon/.cache/modelscope/hub/datasets/modelscope/ms_hackathon_23_agent_train_dev/master/data_files/941b733ec0354c2172a3386d8788bb37\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "82cacd1b06864eabb4e320a93d41691c",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading data files: 0it [00:00, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "37d5dbf851b745fb90b12cb1e4167732",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Extracting data files: 0it [00:00, ?it/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"100%|██████████| 285/285 [00:00<00:00, 380.76it/s]\n",
|
||
"2023-07-02 20:35:05,192 - modelscope - INFO - Dataset Token Length: 888.357487±349.060492, min=48.000000, max=2039.000000, size=4982\n",
|
||
"2023-07-02 20:35:05,192 - modelscope - INFO - Dataset Token Length: 928.654804±330.133929, min=74.000000, max=1959.000000, size=281\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[INPUT_IDS] 你是达摩院的ModelScopeGPT(魔搭助手),你是个大语言模型, 是2023年达摩院的工程师训练得到的。你有多种能力,可以通过插件集成魔搭社区的模型api来回复用户的问题,还能解答用户使用模型遇到的问题和模型知识相关问答。1. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"url\": \"http://109.199.101.10:1485/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
|
||
"\n",
|
||
"2. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"url\": \"http://9.32.64.200:5873/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}}\n",
|
||
"\n",
|
||
"3. {\"plugin_name\": \"modelscope_text-ie\", \"plugin_owner\": \"ModelScopeGPT\", \"plugin_type\": \"default\", \"plugin_schema_for_model\": {\"name\": \"modelscope_text-ie\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"url\": \"http://54.149.78.185:3979/\", \"paths\": [{\"name\": \"modelscope_text-ie\", \"model_id\": \"/damo/nlp_structbert_siamese-uie_chinese-base\", \"method\": \"post\", \"description\": \"针对中文的文本,根据schema要抽取的内容,找出其中对应信息,并用json格式展示\", \"parameters\": [{\"name\": \"text\", \"description\": \"用户输入的文本\", \"required\": \"True\"}, {\"name\": \"schema\", \"description\": \"要抽取信息的json表示\", \"required\": \"True\"}]}]}} \n",
|
||
"\n",
|
||
"### 用户\n",
|
||
"按照给定的schema抽取出下面文本对应的信息\n",
|
||
"schema:{\"人物\": null, \"地理位置\": null, \"组织机构\": null}\n",
|
||
"近日,美国政府宣布将对中国1000多种商品加征关税,并威胁进一步加征关税。 \n",
|
||
"\n",
|
||
"### 助手\n",
|
||
" <|startofthink|>```JSON\n",
|
||
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日,美国政府宣布将对中国1000多种商品加征关税,并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
|
||
"```<|endofthink|>\n",
|
||
"\n",
|
||
"<|startofexec|>```JSON\n",
|
||
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
|
||
"```<|endofexec|>\n",
|
||
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。\n",
|
||
"\n",
|
||
"[LABLES] ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ <|startofthink|>```JSON\n",
|
||
"{\"api_name\": \"modelscope_text-ie\", \"url\": \"http://9.32.64.200:5873/damo/nlp_structbert_siamese-uie_chinese-base\", \"parameters\": {\"text\": \"近日,美国政府宣布将对中国1000多种商品加征关税,并威胁进一步加征关税。\", \"schema\": \"{\\\"人物\\\": null, \\\"地理位置\\\": null, \\\"组织机构\\\": null}\"}}\n",
|
||
"```<|endofthink|>\n",
|
||
"\n",
|
||
"<|startofexec|>```JSON\n",
|
||
"{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}\n",
|
||
"```<|endofexec|>\n",
|
||
"信息抽取结果:{\"人物\": [], \"地理位置\": [\"中国\", \"美国\"], \"组织机构\": []}。我使用的模型是ModelScope的'damo/nlp_structbert_siamese-uie_chinese-base'模型。这是一个基于StructBERT预训练模型微调训练的通用信息抽取模型。\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"tokenize_function = partial(tokenize_function, tokenizer=tokenizer)\n",
|
||
"train_dataset = make_dataset(\"train\", tokenize_function)\n",
|
||
"val_dataset = make_dataset(\"validation\", tokenize_function)\n",
|
||
"# Data analysis\n",
|
||
"stat_dataset(train_dataset)\n",
|
||
"stat_dataset(val_dataset)\n",
|
||
"data_collate_fn = partial(data_collate_fn, tokenizer=tokenizer)\n",
|
||
"print_examples(train_dataset[0], tokenizer)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 配置Config\n",
|
||
"The following code is copied from baichuan_sft.ipynb"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 20:35:05,244 - modelscope - INFO - work_dir: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"cfg_file = os.path.join(model_dir, \"configuration.json\")\n",
|
||
"#\n",
|
||
"BATCH_SIZE = 1\n",
|
||
"MAX_EPOCHS = 1\n",
|
||
"T_max = get_T_max(len(train_dataset), BATCH_SIZE, MAX_EPOCHS, True)\n",
|
||
"WORK_DIR = get_work_dir(WORK_DIR)\n",
|
||
"EVAL_INTERVAL = 200\n",
|
||
"CONFIG = Config({\n",
|
||
" \"train\": {\n",
|
||
" \"dataloader\": {\n",
|
||
" \"batch_size_per_gpu\": BATCH_SIZE,\n",
|
||
" \"workers_per_gpu\": 1,\n",
|
||
" \"shuffle\": True,\n",
|
||
" \"drop_last\": True,\n",
|
||
" \"pin_memory\": True\n",
|
||
" },\n",
|
||
" \"max_epochs\": MAX_EPOCHS,\n",
|
||
" \"work_dir\": WORK_DIR,\n",
|
||
" \"optimizer\": {\n",
|
||
" \"type\": \"AdamW\",\n",
|
||
" \"lr\": 1e-4,\n",
|
||
" \"weight_decay\": 0.01,\n",
|
||
" \"options\": {\n",
|
||
" \"cumulative_iters\": 16, \"grad_clip\": {\n",
|
||
" \"norm_type\": 2,\n",
|
||
" \"max_norm\": 2.0\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"lr_scheduler\": {\n",
|
||
" \"type\": \"CosineAnnealingLR\",\n",
|
||
" \"T_max\": T_max,\n",
|
||
" \"eta_min\": 1e-5,\n",
|
||
" \"options\": {\n",
|
||
" \"by_epoch\": False,\n",
|
||
" \"warmup\": {\n",
|
||
" 'type': 'LinearWarmup',\n",
|
||
" 'warmup_ratio': 0.1,\n",
|
||
" \"warmup_iters\": 200\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"hooks\": [\n",
|
||
" {\"type\": \"CheckpointHook\", \"by_epoch\": False, \"interval\": EVAL_INTERVAL, \"max_checkpoint_num\": 1},\n",
|
||
" {\"type\": \"EvaluationHook\", \"by_epoch\": False, \"interval\": EVAL_INTERVAL},\n",
|
||
" {\"type\": \"BestCkptSaverHook\",\n",
|
||
" \"metric_key\": \"acc\",\n",
|
||
" \"save_best\": True, \"rule\": \"max\", \"max_checkpoint_num\": 1},\n",
|
||
" {\"type\": \"TextLoggerHook\",\n",
|
||
" \"by_epoch\": True, # Whether EpochBasedTrainer is used\n",
|
||
" \"interval\": 5},\n",
|
||
" {\"type\": \"TensorboardHook\", \"by_epoch\": False, \"interval\": 5}\n",
|
||
" ]\n",
|
||
" },\n",
|
||
" \"evaluation\": {\n",
|
||
" \"dataloader\": {\n",
|
||
" \"batch_size_per_gpu\": BATCH_SIZE,\n",
|
||
" \"workers_per_gpu\": 1,\n",
|
||
" \"shuffle\": False,\n",
|
||
" \"drop_last\": False,\n",
|
||
" \"pin_memory\": True\n",
|
||
" },\n",
|
||
" \"metrics\": [\n",
|
||
" {\"type\": \"my_metric\", \"vocab_size\": tokenizer.vocab_size}\n",
|
||
" ]\n",
|
||
" }\n",
|
||
"})"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 微调\n",
|
||
"The following code is copied from baichuan_sft.ipynb"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"2023-07-02 20:35:05,284 - modelscope - INFO - ==========================Training Config Start==========================\n",
|
||
"2023-07-02 20:35:05,285 - modelscope - INFO - {\n",
|
||
" \"framework\": \"pytorch\",\n",
|
||
" \"task\": \"chat\",\n",
|
||
" \"pipeline\": {\n",
|
||
" \"type\": \"chatglm26b-text-generation\"\n",
|
||
" },\n",
|
||
" \"allow_remote\": true,\n",
|
||
" \"train\": {\n",
|
||
" \"hooks\": [\n",
|
||
" {\n",
|
||
" \"type\": \"TensorboardHook\",\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"interval\": 5\n",
|
||
" }\n",
|
||
" ],\n",
|
||
" \"dataloader\": {\n",
|
||
" \"batch_size_per_gpu\": 1,\n",
|
||
" \"workers_per_gpu\": 1,\n",
|
||
" \"shuffle\": true,\n",
|
||
" \"drop_last\": true,\n",
|
||
" \"pin_memory\": true\n",
|
||
" },\n",
|
||
" \"max_epochs\": 1,\n",
|
||
" \"work_dir\": \"/home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\",\n",
|
||
" \"optimizer\": {\n",
|
||
" \"type\": \"AdamW\",\n",
|
||
" \"lr\": 0.0001,\n",
|
||
" \"weight_decay\": 0.01,\n",
|
||
" \"options\": {\n",
|
||
" \"cumulative_iters\": 16,\n",
|
||
" \"grad_clip\": {\n",
|
||
" \"norm_type\": 2,\n",
|
||
" \"max_norm\": 2.0\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"lr_scheduler\": {\n",
|
||
" \"type\": \"CosineAnnealingLR\",\n",
|
||
" \"T_max\": 4982,\n",
|
||
" \"eta_min\": 1e-05,\n",
|
||
" \"options\": {\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"warmup\": {\n",
|
||
" \"type\": \"LinearWarmup\",\n",
|
||
" \"warmup_ratio\": 0.1,\n",
|
||
" \"warmup_iters\": 200\n",
|
||
" }\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"checkpoint\": {\n",
|
||
" \"period\": {\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"interval\": 200,\n",
|
||
" \"max_checkpoint_num\": 1\n",
|
||
" },\n",
|
||
" \"best\": {\n",
|
||
" \"metric_key\": \"acc\",\n",
|
||
" \"save_best\": true,\n",
|
||
" \"rule\": \"max\",\n",
|
||
" \"max_checkpoint_num\": 1\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"logging\": {\n",
|
||
" \"by_epoch\": true,\n",
|
||
" \"interval\": 5\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"evaluation\": {\n",
|
||
" \"dataloader\": {\n",
|
||
" \"batch_size_per_gpu\": 1,\n",
|
||
" \"workers_per_gpu\": 1,\n",
|
||
" \"shuffle\": false,\n",
|
||
" \"drop_last\": false,\n",
|
||
" \"pin_memory\": true\n",
|
||
" },\n",
|
||
" \"metrics\": [\n",
|
||
" {\n",
|
||
" \"type\": \"my_metric\",\n",
|
||
" \"vocab_size\": 64794\n",
|
||
" }\n",
|
||
" ],\n",
|
||
" \"period\": {\n",
|
||
" \"by_epoch\": false,\n",
|
||
" \"interval\": 200\n",
|
||
" }\n",
|
||
" }\n",
|
||
"}\n",
|
||
"2023-07-02 20:35:05,285 - modelscope - INFO - ===========================Training Config End===========================\n",
|
||
"2023-07-02 20:35:05,286 - modelscope - WARNING - ('OPTIMIZER', 'default', 'AdamW') not found in ast index file\n",
|
||
"2023-07-02 20:35:05,287 - modelscope - WARNING - ('LR_SCHEDULER', 'default', 'CosineAnnealingLR') not found in ast index file\n",
|
||
"2023-07-02 20:35:05,289 - modelscope - INFO - Stage: before_run:\n",
|
||
" (ABOVE_NORMAL) OptimizerHook \n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: before_train_epoch:\n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" -------------------- \n",
|
||
"Stage: before_train_iter:\n",
|
||
" (ABOVE_NORMAL) OptimizerHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_train_iter:\n",
|
||
" (ABOVE_NORMAL) OptimizerHook \n",
|
||
" (NORMAL ) EvaluationHook \n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_train_epoch:\n",
|
||
" (NORMAL ) EvaluationHook \n",
|
||
" (LOW ) LrSchedulerHook \n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_val_epoch:\n",
|
||
" (VERY_LOW ) TextLoggerHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"Stage: after_run:\n",
|
||
" (LOW ) BestCkptSaverHook \n",
|
||
" (LOW ) CheckpointHook \n",
|
||
" (VERY_LOW ) TensorboardHook \n",
|
||
" -------------------- \n",
|
||
"2023-07-02 20:35:05,293 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n",
|
||
"2023-07-02 20:35:05,296 - modelscope - INFO - Checkpoints will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n",
|
||
"2023-07-02 20:35:05,296 - modelscope - INFO - Text logs will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505\n",
|
||
"2023-07-02 20:35:05,296 - modelscope - INFO - tensorboard files will be saved to /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/tensorboard_output\n",
|
||
"2023-07-02 20:35:09,665 - modelscope - INFO - epoch [1][5/4982]\tlr: 1.000e-05, memory: 9310, loss: 4.4797\n",
|
||
"2023-07-02 20:35:11,753 - modelscope - INFO - epoch [1][10/4982]\tlr: 1.000e-05, memory: 9653, loss: 4.4281\n",
|
||
"2023-07-02 20:35:15,111 - modelscope - INFO - epoch [1][15/4982]\tlr: 1.000e-05, memory: 11498, loss: 5.4297\n",
|
||
"2023-07-02 20:35:18,142 - modelscope - INFO - epoch [1][20/4982]\tlr: 1.225e-05, memory: 12041, loss: 2.6703\n",
|
||
"2023-07-02 20:35:21,335 - modelscope - INFO - epoch [1][25/4982]\tlr: 1.450e-05, memory: 12041, loss: 2.5969\n",
|
||
"2023-07-02 20:35:24,524 - modelscope - INFO - epoch [1][30/4982]\tlr: 1.675e-05, memory: 12180, loss: 2.7797\n",
|
||
"2023-07-02 20:35:27,061 - modelscope - INFO - epoch [1][35/4982]\tlr: 1.900e-05, memory: 12180, loss: 5.0344\n",
|
||
"2023-07-02 20:35:29,749 - modelscope - INFO - epoch [1][40/4982]\tlr: 2.125e-05, memory: 12180, loss: 6.1875\n",
|
||
"2023-07-02 20:35:32,140 - modelscope - INFO - epoch [1][45/4982]\tlr: 2.350e-05, memory: 12180, loss: 4.5844\n",
|
||
"2023-07-02 20:35:35,367 - modelscope - INFO - epoch [1][50/4982]\tlr: 2.575e-05, memory: 12180, loss: 3.3578\n",
|
||
"2023-07-02 20:35:37,739 - modelscope - INFO - epoch [1][55/4982]\tlr: 2.800e-05, memory: 12180, loss: 3.0375\n",
|
||
"2023-07-02 20:35:41,595 - modelscope - INFO - epoch [1][60/4982]\tlr: 3.025e-05, memory: 12180, loss: 2.7219\n",
|
||
"2023-07-02 20:35:44,105 - modelscope - INFO - epoch [1][65/4982]\tlr: 3.250e-05, memory: 12180, loss: 4.8016\n",
|
||
"2023-07-02 20:35:46,069 - modelscope - INFO - epoch [1][70/4982]\tlr: 3.475e-05, memory: 12180, loss: 6.9406\n",
|
||
"2023-07-02 20:35:48,149 - modelscope - INFO - epoch [1][75/4982]\tlr: 3.700e-05, memory: 12180, loss: 3.2133\n",
|
||
"2023-07-02 20:35:50,371 - modelscope - INFO - epoch [1][80/4982]\tlr: 3.925e-05, memory: 12180, loss: 4.3719\n",
|
||
"2023-07-02 20:35:53,531 - modelscope - INFO - epoch [1][85/4982]\tlr: 4.150e-05, memory: 12180, loss: 5.8875\n",
|
||
"2023-07-02 20:35:55,682 - modelscope - INFO - epoch [1][90/4982]\tlr: 4.375e-05, memory: 12180, loss: 4.9297\n",
|
||
"2023-07-02 20:35:57,349 - modelscope - INFO - epoch [1][95/4982]\tlr: 4.600e-05, memory: 12180, loss: 5.8781\n",
|
||
"2023-07-02 20:36:00,218 - modelscope - INFO - epoch [1][100/4982]\tlr: 4.825e-05, memory: 12180, loss: 2.4125\n",
|
||
"2023-07-02 20:36:02,674 - modelscope - INFO - epoch [1][105/4982]\tlr: 5.050e-05, memory: 12180, loss: 6.7234\n",
|
||
"2023-07-02 20:36:05,443 - modelscope - INFO - epoch [1][110/4982]\tlr: 5.275e-05, memory: 12180, loss: 3.7437\n",
|
||
"2023-07-02 20:36:08,231 - modelscope - INFO - epoch [1][115/4982]\tlr: 5.500e-05, memory: 12180, loss: 4.5187\n",
|
||
"2023-07-02 20:36:10,992 - modelscope - INFO - epoch [1][120/4982]\tlr: 5.725e-05, memory: 12180, loss: 4.3281\n",
|
||
"2023-07-02 20:36:12,907 - modelscope - INFO - epoch [1][125/4982]\tlr: 5.950e-05, memory: 12180, loss: 4.4422\n",
|
||
"2023-07-02 20:36:16,210 - modelscope - INFO - epoch [1][130/4982]\tlr: 6.175e-05, memory: 12992, loss: 5.8688\n",
|
||
"2023-07-02 20:36:18,791 - modelscope - INFO - epoch [1][135/4982]\tlr: 6.400e-05, memory: 12992, loss: 3.2531\n",
|
||
"2023-07-02 20:36:19,911 - modelscope - INFO - epoch [1][140/4982]\tlr: 6.625e-05, memory: 12992, loss: 5.1781\n",
|
||
"2023-07-02 20:36:22,445 - modelscope - INFO - epoch [1][145/4982]\tlr: 6.850e-05, memory: 12992, loss: 3.4523\n",
|
||
"2023-07-02 20:36:24,826 - modelscope - INFO - epoch [1][150/4982]\tlr: 7.075e-05, memory: 12992, loss: 4.6125\n",
|
||
"2023-07-02 20:36:26,567 - modelscope - INFO - epoch [1][155/4982]\tlr: 7.300e-05, memory: 12992, loss: 4.0859\n",
|
||
"2023-07-02 20:36:29,936 - modelscope - INFO - epoch [1][160/4982]\tlr: 7.525e-05, memory: 12992, loss: 3.4937\n",
|
||
"2023-07-02 20:36:32,253 - modelscope - INFO - epoch [1][165/4982]\tlr: 7.750e-05, memory: 12992, loss: 5.8266\n",
|
||
"2023-07-02 20:36:34,867 - modelscope - INFO - epoch [1][170/4982]\tlr: 7.975e-05, memory: 12992, loss: 2.7047\n",
|
||
"2023-07-02 20:36:38,118 - modelscope - INFO - epoch [1][175/4982]\tlr: 8.200e-05, memory: 12992, loss: 2.5844\n",
|
||
"2023-07-02 20:36:40,913 - modelscope - INFO - epoch [1][180/4982]\tlr: 8.425e-05, memory: 12992, loss: 3.9641\n",
|
||
"2023-07-02 20:36:43,807 - modelscope - INFO - epoch [1][185/4982]\tlr: 8.650e-05, memory: 12992, loss: 3.1375\n",
|
||
"2023-07-02 20:36:46,624 - modelscope - INFO - epoch [1][190/4982]\tlr: 8.875e-05, memory: 12992, loss: 3.8813\n",
|
||
"2023-07-02 20:36:49,527 - modelscope - INFO - epoch [1][195/4982]\tlr: 9.100e-05, memory: 12992, loss: 3.6156\n",
|
||
"2023-07-02 20:36:51,833 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:05<00:00, 4.29it/s]\n",
|
||
"2023-07-02 20:37:57,381 - modelscope - INFO - Saving checkpoint at 200 iter\n",
|
||
"2023-07-02 20:37:57,410 - modelscope - INFO - Saving checkpoint at 200 iter\n",
|
||
"2023-07-02 20:37:57,436 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 12992, evaluation/acc: 0.6542, evaluation/loss: 3.4747, loss: 4.5406\n",
|
||
"2023-07-02 20:38:00,375 - modelscope - INFO - epoch [1][205/4982]\tlr: 9.550e-05, memory: 12992, loss: 3.8125\n",
|
||
"2023-07-02 20:38:03,071 - modelscope - INFO - epoch [1][210/4982]\tlr: 9.775e-05, memory: 12992, loss: 4.4109\n",
|
||
"2023-07-02 20:38:06,715 - modelscope - INFO - epoch [1][215/4982]\tlr: 1.000e-04, memory: 12992, loss: 2.2437\n",
|
||
"2023-07-02 20:38:09,499 - modelscope - INFO - epoch [1][220/4982]\tlr: 9.998e-05, memory: 12992, loss: 3.2750\n",
|
||
"2023-07-02 20:38:13,188 - modelscope - INFO - epoch [1][225/4982]\tlr: 9.996e-05, memory: 13730, loss: 3.2656\n",
|
||
"2023-07-02 20:38:15,237 - modelscope - INFO - epoch [1][230/4982]\tlr: 9.994e-05, memory: 13730, loss: 4.3750\n",
|
||
"2023-07-02 20:38:17,706 - modelscope - INFO - epoch [1][235/4982]\tlr: 9.992e-05, memory: 13730, loss: 3.2844\n",
|
||
"2023-07-02 20:38:20,429 - modelscope - INFO - epoch [1][240/4982]\tlr: 9.990e-05, memory: 13730, loss: 2.9766\n",
|
||
"2023-07-02 20:38:23,127 - modelscope - INFO - epoch [1][245/4982]\tlr: 9.988e-05, memory: 13730, loss: 4.4125\n",
|
||
"2023-07-02 20:38:26,058 - modelscope - INFO - epoch [1][250/4982]\tlr: 9.986e-05, memory: 13730, loss: 2.3047\n",
|
||
"2023-07-02 20:38:28,740 - modelscope - INFO - epoch [1][255/4982]\tlr: 9.984e-05, memory: 13730, loss: 3.5484\n",
|
||
"2023-07-02 20:38:31,332 - modelscope - INFO - epoch [1][260/4982]\tlr: 9.982e-05, memory: 13730, loss: 4.4297\n",
|
||
"2023-07-02 20:38:33,632 - modelscope - INFO - epoch [1][265/4982]\tlr: 9.980e-05, memory: 13730, loss: 5.1078\n",
|
||
"2023-07-02 20:38:35,634 - modelscope - INFO - epoch [1][270/4982]\tlr: 9.977e-05, memory: 13730, loss: 4.2250\n",
|
||
"2023-07-02 20:38:37,731 - modelscope - INFO - epoch [1][275/4982]\tlr: 9.975e-05, memory: 13730, loss: 4.5984\n",
|
||
"2023-07-02 20:38:39,950 - modelscope - INFO - epoch [1][280/4982]\tlr: 9.973e-05, memory: 13730, loss: 4.0594\n",
|
||
"2023-07-02 20:38:42,470 - modelscope - INFO - epoch [1][285/4982]\tlr: 9.970e-05, memory: 13730, loss: 2.6523\n",
|
||
"2023-07-02 20:38:45,483 - modelscope - INFO - epoch [1][290/4982]\tlr: 9.968e-05, memory: 13730, loss: 2.5766\n",
|
||
"2023-07-02 20:38:47,773 - modelscope - INFO - epoch [1][295/4982]\tlr: 9.965e-05, memory: 13730, loss: 2.7078\n",
|
||
"2023-07-02 20:38:51,126 - modelscope - INFO - epoch [1][300/4982]\tlr: 9.963e-05, memory: 13730, loss: 5.0844\n",
|
||
"2023-07-02 20:38:53,948 - modelscope - INFO - epoch [1][305/4982]\tlr: 9.960e-05, memory: 13730, loss: 3.3844\n",
|
||
"2023-07-02 20:38:56,666 - modelscope - INFO - epoch [1][310/4982]\tlr: 9.958e-05, memory: 13730, loss: 3.1812\n",
|
||
"2023-07-02 20:38:59,269 - modelscope - INFO - epoch [1][315/4982]\tlr: 9.955e-05, memory: 13730, loss: 3.3219\n",
|
||
"2023-07-02 20:39:02,576 - modelscope - INFO - epoch [1][320/4982]\tlr: 9.952e-05, memory: 13730, loss: 2.0031\n",
|
||
"2023-07-02 20:39:04,494 - modelscope - INFO - epoch [1][325/4982]\tlr: 9.949e-05, memory: 13730, loss: 3.7469\n",
|
||
"2023-07-02 20:39:07,068 - modelscope - INFO - epoch [1][330/4982]\tlr: 9.947e-05, memory: 13730, loss: 3.0187\n",
|
||
"2023-07-02 20:39:09,719 - modelscope - INFO - epoch [1][335/4982]\tlr: 9.944e-05, memory: 13730, loss: 2.5828\n",
|
||
"2023-07-02 20:39:11,755 - modelscope - INFO - epoch [1][340/4982]\tlr: 9.941e-05, memory: 13730, loss: 4.1156\n",
|
||
"2023-07-02 20:39:14,258 - modelscope - INFO - epoch [1][345/4982]\tlr: 9.938e-05, memory: 13730, loss: 5.1594\n",
|
||
"2023-07-02 20:39:16,436 - modelscope - INFO - epoch [1][350/4982]\tlr: 9.935e-05, memory: 13730, loss: 4.0859\n",
|
||
"2023-07-02 20:39:19,643 - modelscope - INFO - epoch [1][355/4982]\tlr: 9.932e-05, memory: 13730, loss: 1.8391\n",
|
||
"2023-07-02 20:39:22,779 - modelscope - INFO - epoch [1][360/4982]\tlr: 9.929e-05, memory: 13730, loss: 2.0641\n",
|
||
"2023-07-02 20:39:25,402 - modelscope - INFO - epoch [1][365/4982]\tlr: 9.926e-05, memory: 13730, loss: 1.9453\n",
|
||
"2023-07-02 20:39:27,813 - modelscope - INFO - epoch [1][370/4982]\tlr: 9.923e-05, memory: 13730, loss: 3.8641\n",
|
||
"2023-07-02 20:39:30,315 - modelscope - INFO - epoch [1][375/4982]\tlr: 9.920e-05, memory: 13730, loss: 3.0281\n",
|
||
"2023-07-02 20:39:33,075 - modelscope - INFO - epoch [1][380/4982]\tlr: 9.916e-05, memory: 13730, loss: 1.9109\n",
|
||
"2023-07-02 20:39:35,539 - modelscope - INFO - epoch [1][385/4982]\tlr: 9.913e-05, memory: 13730, loss: 3.9797\n",
|
||
"2023-07-02 20:39:37,804 - modelscope - INFO - epoch [1][390/4982]\tlr: 9.910e-05, memory: 13730, loss: 4.4547\n",
|
||
"2023-07-02 20:39:40,277 - modelscope - INFO - epoch [1][395/4982]\tlr: 9.906e-05, memory: 13730, loss: 2.4516\n",
|
||
"2023-07-02 20:39:43,900 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.25it/s]\n",
|
||
"2023-07-02 20:40:50,049 - modelscope - INFO - Saving checkpoint at 400 iter\n",
|
||
"2023-07-02 20:40:50,080 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter200_acc0.6542276740074158\n",
|
||
"2023-07-02 20:40:50,083 - modelscope - INFO - Saving checkpoint at 400 iter\n",
|
||
"2023-07-02 20:40:50,113 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_200\n",
|
||
"2023-07-02 20:40:50,115 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13730, evaluation/acc: 0.6604, evaluation/loss: 3.0119, loss: 2.8062\n",
|
||
"2023-07-02 20:40:53,254 - modelscope - INFO - epoch [1][405/4982]\tlr: 9.900e-05, memory: 13730, loss: 3.2422\n",
|
||
"2023-07-02 20:40:55,618 - modelscope - INFO - epoch [1][410/4982]\tlr: 9.896e-05, memory: 13730, loss: 4.2297\n",
|
||
"2023-07-02 20:40:58,448 - modelscope - INFO - epoch [1][415/4982]\tlr: 9.893e-05, memory: 13730, loss: 3.6063\n",
|
||
"2023-07-02 20:41:00,872 - modelscope - INFO - epoch [1][420/4982]\tlr: 9.889e-05, memory: 13730, loss: 4.6141\n",
|
||
"2023-07-02 20:41:02,997 - modelscope - INFO - epoch [1][425/4982]\tlr: 9.885e-05, memory: 13730, loss: 5.2875\n",
|
||
"2023-07-02 20:41:06,866 - modelscope - INFO - epoch [1][430/4982]\tlr: 9.882e-05, memory: 13730, loss: 2.2109\n",
|
||
"2023-07-02 20:41:09,155 - modelscope - INFO - epoch [1][435/4982]\tlr: 9.878e-05, memory: 13730, loss: 2.5969\n",
|
||
"2023-07-02 20:41:11,158 - modelscope - INFO - epoch [1][440/4982]\tlr: 9.874e-05, memory: 13730, loss: 3.1453\n",
|
||
"2023-07-02 20:41:13,695 - modelscope - INFO - epoch [1][445/4982]\tlr: 9.870e-05, memory: 13730, loss: 4.1219\n",
|
||
"2023-07-02 20:41:16,481 - modelscope - INFO - epoch [1][450/4982]\tlr: 9.867e-05, memory: 13730, loss: 3.0016\n",
|
||
"2023-07-02 20:41:19,595 - modelscope - INFO - epoch [1][455/4982]\tlr: 9.863e-05, memory: 13730, loss: 2.0086\n",
|
||
"2023-07-02 20:41:22,798 - modelscope - INFO - epoch [1][460/4982]\tlr: 9.859e-05, memory: 13730, loss: 1.6477\n",
|
||
"2023-07-02 20:41:24,516 - modelscope - INFO - epoch [1][465/4982]\tlr: 9.855e-05, memory: 13730, loss: 5.0250\n",
|
||
"2023-07-02 20:41:26,807 - modelscope - INFO - epoch [1][470/4982]\tlr: 9.851e-05, memory: 13730, loss: 5.0906\n",
|
||
"2023-07-02 20:41:29,550 - modelscope - INFO - epoch [1][475/4982]\tlr: 9.847e-05, memory: 13730, loss: 3.1719\n",
|
||
"2023-07-02 20:41:31,558 - modelscope - INFO - epoch [1][480/4982]\tlr: 9.843e-05, memory: 13730, loss: 3.0094\n",
|
||
"2023-07-02 20:41:34,367 - modelscope - INFO - epoch [1][485/4982]\tlr: 9.839e-05, memory: 13730, loss: 1.8000\n",
|
||
"2023-07-02 20:41:37,084 - modelscope - INFO - epoch [1][490/4982]\tlr: 9.834e-05, memory: 13730, loss: 3.2406\n",
|
||
"2023-07-02 20:41:39,602 - modelscope - INFO - epoch [1][495/4982]\tlr: 9.830e-05, memory: 13730, loss: 2.9141\n",
|
||
"2023-07-02 20:41:42,010 - modelscope - INFO - epoch [1][500/4982]\tlr: 9.826e-05, memory: 13730, loss: 3.1969\n",
|
||
"2023-07-02 20:41:44,328 - modelscope - INFO - epoch [1][505/4982]\tlr: 9.822e-05, memory: 13730, loss: 2.4125\n",
|
||
"2023-07-02 20:41:47,138 - modelscope - INFO - epoch [1][510/4982]\tlr: 9.817e-05, memory: 13730, loss: 2.3031\n",
|
||
"2023-07-02 20:41:50,494 - modelscope - INFO - epoch [1][515/4982]\tlr: 9.813e-05, memory: 13730, loss: 2.2938\n",
|
||
"2023-07-02 20:41:52,746 - modelscope - INFO - epoch [1][520/4982]\tlr: 9.808e-05, memory: 13730, loss: 3.8672\n",
|
||
"2023-07-02 20:41:54,958 - modelscope - INFO - epoch [1][525/4982]\tlr: 9.804e-05, memory: 13730, loss: 3.2156\n",
|
||
"2023-07-02 20:41:57,466 - modelscope - INFO - epoch [1][530/4982]\tlr: 9.799e-05, memory: 13730, loss: 3.0344\n",
|
||
"2023-07-02 20:42:00,137 - modelscope - INFO - epoch [1][535/4982]\tlr: 9.795e-05, memory: 13730, loss: 4.9406\n",
|
||
"2023-07-02 20:42:02,774 - modelscope - INFO - epoch [1][540/4982]\tlr: 9.790e-05, memory: 13730, loss: 3.3563\n",
|
||
"2023-07-02 20:42:05,715 - modelscope - INFO - epoch [1][545/4982]\tlr: 9.786e-05, memory: 13730, loss: 1.4797\n",
|
||
"2023-07-02 20:42:07,960 - modelscope - INFO - epoch [1][550/4982]\tlr: 9.781e-05, memory: 13730, loss: 3.8781\n",
|
||
"2023-07-02 20:42:11,011 - modelscope - INFO - epoch [1][555/4982]\tlr: 9.776e-05, memory: 13730, loss: 2.9297\n",
|
||
"2023-07-02 20:42:13,456 - modelscope - INFO - epoch [1][560/4982]\tlr: 9.771e-05, memory: 13730, loss: 3.8203\n",
|
||
"2023-07-02 20:42:15,443 - modelscope - INFO - epoch [1][565/4982]\tlr: 9.767e-05, memory: 13730, loss: 2.0219\n",
|
||
"2023-07-02 20:42:18,846 - modelscope - INFO - epoch [1][570/4982]\tlr: 9.762e-05, memory: 13730, loss: 1.9281\n",
|
||
"2023-07-02 20:42:22,121 - modelscope - INFO - epoch [1][575/4982]\tlr: 9.757e-05, memory: 13730, loss: 2.6750\n",
|
||
"2023-07-02 20:42:25,145 - modelscope - INFO - epoch [1][580/4982]\tlr: 9.752e-05, memory: 13730, loss: 1.7852\n",
|
||
"2023-07-02 20:42:27,316 - modelscope - INFO - epoch [1][585/4982]\tlr: 9.747e-05, memory: 13730, loss: 2.8047\n",
|
||
"2023-07-02 20:42:29,441 - modelscope - INFO - epoch [1][590/4982]\tlr: 9.742e-05, memory: 13730, loss: 2.6773\n",
|
||
"2023-07-02 20:42:32,360 - modelscope - INFO - epoch [1][595/4982]\tlr: 9.737e-05, memory: 13730, loss: 1.9812\n",
|
||
"2023-07-02 20:42:35,221 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
|
||
"2023-07-02 20:43:41,520 - modelscope - INFO - Saving checkpoint at 600 iter\n",
|
||
"2023-07-02 20:43:41,550 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter400_acc0.6604225635528564\n",
|
||
"2023-07-02 20:43:41,552 - modelscope - INFO - Saving checkpoint at 600 iter\n",
|
||
"2023-07-02 20:43:41,582 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_400\n",
|
||
"2023-07-02 20:43:41,584 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13730, evaluation/acc: 0.6708, evaluation/loss: 2.5856, loss: 2.3328\n",
|
||
"2023-07-02 20:43:43,999 - modelscope - INFO - epoch [1][605/4982]\tlr: 9.726e-05, memory: 13730, loss: 2.6875\n",
|
||
"2023-07-02 20:43:47,119 - modelscope - INFO - epoch [1][610/4982]\tlr: 9.721e-05, memory: 13730, loss: 1.4031\n",
|
||
"2023-07-02 20:43:48,961 - modelscope - INFO - epoch [1][615/4982]\tlr: 9.716e-05, memory: 13730, loss: 2.9422\n",
|
||
"2023-07-02 20:43:51,931 - modelscope - INFO - epoch [1][620/4982]\tlr: 9.711e-05, memory: 13730, loss: 2.2016\n",
|
||
"2023-07-02 20:43:55,085 - modelscope - INFO - epoch [1][625/4982]\tlr: 9.705e-05, memory: 13730, loss: 2.4344\n",
|
||
"2023-07-02 20:43:57,859 - modelscope - INFO - epoch [1][630/4982]\tlr: 9.700e-05, memory: 13730, loss: 1.9727\n",
|
||
"2023-07-02 20:44:00,652 - modelscope - INFO - epoch [1][635/4982]\tlr: 9.695e-05, memory: 13730, loss: 3.5047\n",
|
||
"2023-07-02 20:44:03,525 - modelscope - INFO - epoch [1][640/4982]\tlr: 9.689e-05, memory: 13730, loss: 2.3672\n",
|
||
"2023-07-02 20:44:06,457 - modelscope - INFO - epoch [1][645/4982]\tlr: 9.684e-05, memory: 13730, loss: 2.7797\n",
|
||
"2023-07-02 20:44:08,691 - modelscope - INFO - epoch [1][650/4982]\tlr: 9.678e-05, memory: 13730, loss: 1.9734\n",
|
||
"2023-07-02 20:44:11,608 - modelscope - INFO - epoch [1][655/4982]\tlr: 9.673e-05, memory: 13730, loss: 2.0531\n",
|
||
"2023-07-02 20:44:13,499 - modelscope - INFO - epoch [1][660/4982]\tlr: 9.667e-05, memory: 13730, loss: 2.8078\n",
|
||
"2023-07-02 20:44:15,767 - modelscope - INFO - epoch [1][665/4982]\tlr: 9.661e-05, memory: 13730, loss: 3.3703\n",
|
||
"2023-07-02 20:44:18,064 - modelscope - INFO - epoch [1][670/4982]\tlr: 9.656e-05, memory: 13730, loss: 3.2156\n",
|
||
"2023-07-02 20:44:20,955 - modelscope - INFO - epoch [1][675/4982]\tlr: 9.650e-05, memory: 13830, loss: 3.4172\n",
|
||
"2023-07-02 20:44:24,557 - modelscope - INFO - epoch [1][680/4982]\tlr: 9.644e-05, memory: 13830, loss: 1.4219\n",
|
||
"2023-07-02 20:44:27,433 - modelscope - INFO - epoch [1][685/4982]\tlr: 9.638e-05, memory: 13830, loss: 3.5094\n",
|
||
"2023-07-02 20:44:30,177 - modelscope - INFO - epoch [1][690/4982]\tlr: 9.632e-05, memory: 13830, loss: 2.3234\n",
|
||
"2023-07-02 20:44:32,790 - modelscope - INFO - epoch [1][695/4982]\tlr: 9.627e-05, memory: 13830, loss: 1.7906\n",
|
||
"2023-07-02 20:44:35,003 - modelscope - INFO - epoch [1][700/4982]\tlr: 9.621e-05, memory: 13830, loss: 3.4016\n",
|
||
"2023-07-02 20:44:38,237 - modelscope - INFO - epoch [1][705/4982]\tlr: 9.615e-05, memory: 13830, loss: 2.1484\n",
|
||
"2023-07-02 20:44:42,304 - modelscope - INFO - epoch [1][710/4982]\tlr: 9.609e-05, memory: 13830, loss: 1.9828\n",
|
||
"2023-07-02 20:44:45,293 - modelscope - INFO - epoch [1][715/4982]\tlr: 9.602e-05, memory: 13830, loss: 1.6828\n",
|
||
"2023-07-02 20:44:48,385 - modelscope - INFO - epoch [1][720/4982]\tlr: 9.596e-05, memory: 13830, loss: 2.0969\n",
|
||
"2023-07-02 20:44:50,846 - modelscope - INFO - epoch [1][725/4982]\tlr: 9.590e-05, memory: 13830, loss: 3.2031\n",
|
||
"2023-07-02 20:44:53,572 - modelscope - INFO - epoch [1][730/4982]\tlr: 9.584e-05, memory: 13830, loss: 2.8055\n",
|
||
"2023-07-02 20:44:54,918 - modelscope - INFO - epoch [1][735/4982]\tlr: 9.578e-05, memory: 13830, loss: 5.0641\n",
|
||
"2023-07-02 20:44:58,220 - modelscope - INFO - epoch [1][740/4982]\tlr: 9.572e-05, memory: 13830, loss: 2.5125\n",
|
||
"2023-07-02 20:45:01,363 - modelscope - INFO - epoch [1][745/4982]\tlr: 9.565e-05, memory: 13830, loss: 1.5758\n",
|
||
"2023-07-02 20:45:03,990 - modelscope - INFO - epoch [1][750/4982]\tlr: 9.559e-05, memory: 13830, loss: 2.3664\n",
|
||
"2023-07-02 20:45:06,603 - modelscope - INFO - epoch [1][755/4982]\tlr: 9.553e-05, memory: 13830, loss: 1.8188\n",
|
||
"2023-07-02 20:45:09,658 - modelscope - INFO - epoch [1][760/4982]\tlr: 9.546e-05, memory: 13830, loss: 2.6125\n",
|
||
"2023-07-02 20:45:12,102 - modelscope - INFO - epoch [1][765/4982]\tlr: 9.540e-05, memory: 13830, loss: 1.7031\n",
|
||
"2023-07-02 20:45:14,836 - modelscope - INFO - epoch [1][770/4982]\tlr: 9.533e-05, memory: 13830, loss: 1.7359\n",
|
||
"2023-07-02 20:45:17,436 - modelscope - INFO - epoch [1][775/4982]\tlr: 9.527e-05, memory: 13830, loss: 1.4336\n",
|
||
"2023-07-02 20:45:20,163 - modelscope - INFO - epoch [1][780/4982]\tlr: 9.520e-05, memory: 13830, loss: 2.5672\n",
|
||
"2023-07-02 20:45:23,429 - modelscope - INFO - epoch [1][785/4982]\tlr: 9.513e-05, memory: 13830, loss: 1.9164\n",
|
||
"2023-07-02 20:45:26,285 - modelscope - INFO - epoch [1][790/4982]\tlr: 9.507e-05, memory: 13830, loss: 2.3203\n",
|
||
"2023-07-02 20:45:28,656 - modelscope - INFO - epoch [1][795/4982]\tlr: 9.500e-05, memory: 13830, loss: 2.7672\n",
|
||
"2023-07-02 20:45:31,279 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 20:46:37,656 - modelscope - INFO - Saving checkpoint at 800 iter\n",
|
||
"2023-07-02 20:46:37,685 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter600_acc0.6708211898803711\n",
|
||
"2023-07-02 20:46:37,687 - modelscope - INFO - Saving checkpoint at 800 iter\n",
|
||
"2023-07-02 20:46:37,715 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_600\n",
|
||
"2023-07-02 20:46:37,718 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13830, evaluation/acc: 0.6881, evaluation/loss: 2.2625, loss: 2.6750\n",
|
||
"2023-07-02 20:46:40,639 - modelscope - INFO - epoch [1][805/4982]\tlr: 9.486e-05, memory: 13830, loss: 1.8695\n",
|
||
"2023-07-02 20:46:43,092 - modelscope - INFO - epoch [1][810/4982]\tlr: 9.480e-05, memory: 13830, loss: 2.8734\n",
|
||
"2023-07-02 20:46:46,484 - modelscope - INFO - epoch [1][815/4982]\tlr: 9.473e-05, memory: 13830, loss: 1.7906\n",
|
||
"2023-07-02 20:46:49,542 - modelscope - INFO - epoch [1][820/4982]\tlr: 9.466e-05, memory: 13830, loss: 2.6391\n",
|
||
"2023-07-02 20:46:52,581 - modelscope - INFO - epoch [1][825/4982]\tlr: 9.459e-05, memory: 13830, loss: 2.3250\n",
|
||
"2023-07-02 20:46:55,248 - modelscope - INFO - epoch [1][830/4982]\tlr: 9.452e-05, memory: 13830, loss: 2.3188\n",
|
||
"2023-07-02 20:46:58,323 - modelscope - INFO - epoch [1][835/4982]\tlr: 9.445e-05, memory: 13830, loss: 1.8852\n",
|
||
"2023-07-02 20:47:00,885 - modelscope - INFO - epoch [1][840/4982]\tlr: 9.438e-05, memory: 13830, loss: 2.5203\n",
|
||
"2023-07-02 20:47:03,739 - modelscope - INFO - epoch [1][845/4982]\tlr: 9.431e-05, memory: 13830, loss: 2.2563\n",
|
||
"2023-07-02 20:47:06,494 - modelscope - INFO - epoch [1][850/4982]\tlr: 9.424e-05, memory: 13830, loss: 2.4937\n",
|
||
"2023-07-02 20:47:08,653 - modelscope - INFO - epoch [1][855/4982]\tlr: 9.416e-05, memory: 13830, loss: 2.1844\n",
|
||
"2023-07-02 20:47:12,100 - modelscope - INFO - epoch [1][860/4982]\tlr: 9.409e-05, memory: 13830, loss: 2.6281\n",
|
||
"2023-07-02 20:47:14,954 - modelscope - INFO - epoch [1][865/4982]\tlr: 9.402e-05, memory: 13830, loss: 1.7703\n",
|
||
"2023-07-02 20:47:17,549 - modelscope - INFO - epoch [1][870/4982]\tlr: 9.395e-05, memory: 13830, loss: 3.3172\n",
|
||
"2023-07-02 20:47:20,094 - modelscope - INFO - epoch [1][875/4982]\tlr: 9.387e-05, memory: 13830, loss: 2.2594\n",
|
||
"2023-07-02 20:47:23,556 - modelscope - INFO - epoch [1][880/4982]\tlr: 9.380e-05, memory: 13830, loss: 2.6352\n",
|
||
"2023-07-02 20:47:25,327 - modelscope - INFO - epoch [1][885/4982]\tlr: 9.373e-05, memory: 13830, loss: 2.7180\n",
|
||
"2023-07-02 20:47:28,177 - modelscope - INFO - epoch [1][890/4982]\tlr: 9.365e-05, memory: 13830, loss: 2.3750\n",
|
||
"2023-07-02 20:47:30,955 - modelscope - INFO - epoch [1][895/4982]\tlr: 9.358e-05, memory: 13830, loss: 1.7266\n",
|
||
"2023-07-02 20:47:34,940 - modelscope - INFO - epoch [1][900/4982]\tlr: 9.350e-05, memory: 13830, loss: 2.1984\n",
|
||
"2023-07-02 20:47:37,402 - modelscope - INFO - epoch [1][905/4982]\tlr: 9.343e-05, memory: 13830, loss: 2.2336\n",
|
||
"2023-07-02 20:47:40,011 - modelscope - INFO - epoch [1][910/4982]\tlr: 9.335e-05, memory: 13830, loss: 2.7844\n",
|
||
"2023-07-02 20:47:42,601 - modelscope - INFO - epoch [1][915/4982]\tlr: 9.327e-05, memory: 13830, loss: 3.2297\n",
|
||
"2023-07-02 20:47:44,837 - modelscope - INFO - epoch [1][920/4982]\tlr: 9.320e-05, memory: 13830, loss: 2.4188\n",
|
||
"2023-07-02 20:47:47,897 - modelscope - INFO - epoch [1][925/4982]\tlr: 9.312e-05, memory: 13830, loss: 1.6863\n",
|
||
"2023-07-02 20:47:50,418 - modelscope - INFO - epoch [1][930/4982]\tlr: 9.304e-05, memory: 13830, loss: 3.9219\n",
|
||
"2023-07-02 20:47:52,672 - modelscope - INFO - epoch [1][935/4982]\tlr: 9.296e-05, memory: 13830, loss: 1.6926\n",
|
||
"2023-07-02 20:47:55,286 - modelscope - INFO - epoch [1][940/4982]\tlr: 9.289e-05, memory: 13830, loss: 1.7281\n",
|
||
"2023-07-02 20:47:59,111 - modelscope - INFO - epoch [1][945/4982]\tlr: 9.281e-05, memory: 13830, loss: 1.1969\n",
|
||
"2023-07-02 20:48:01,843 - modelscope - INFO - epoch [1][950/4982]\tlr: 9.273e-05, memory: 13830, loss: 1.6633\n",
|
||
"2023-07-02 20:48:04,387 - modelscope - INFO - epoch [1][955/4982]\tlr: 9.265e-05, memory: 13830, loss: 2.2094\n",
|
||
"2023-07-02 20:48:06,681 - modelscope - INFO - epoch [1][960/4982]\tlr: 9.257e-05, memory: 13830, loss: 2.1922\n",
|
||
"2023-07-02 20:48:09,850 - modelscope - INFO - epoch [1][965/4982]\tlr: 9.249e-05, memory: 13830, loss: 1.3594\n",
|
||
"2023-07-02 20:48:12,651 - modelscope - INFO - epoch [1][970/4982]\tlr: 9.241e-05, memory: 13830, loss: 1.7945\n",
|
||
"2023-07-02 20:48:15,819 - modelscope - INFO - epoch [1][975/4982]\tlr: 9.233e-05, memory: 13830, loss: 1.7203\n",
|
||
"2023-07-02 20:48:18,453 - modelscope - INFO - epoch [1][980/4982]\tlr: 9.225e-05, memory: 13830, loss: 1.8453\n",
|
||
"2023-07-02 20:48:20,628 - modelscope - INFO - epoch [1][985/4982]\tlr: 9.216e-05, memory: 13830, loss: 1.8086\n",
|
||
"2023-07-02 20:48:22,947 - modelscope - INFO - epoch [1][990/4982]\tlr: 9.208e-05, memory: 13830, loss: 2.6445\n",
|
||
"2023-07-02 20:48:25,309 - modelscope - INFO - epoch [1][995/4982]\tlr: 9.200e-05, memory: 13830, loss: 3.2172\n",
|
||
"2023-07-02 20:48:28,028 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 20:49:34,496 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
|
||
"2023-07-02 20:49:34,522 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter800_acc0.6881153583526611\n",
|
||
"2023-07-02 20:49:34,524 - modelscope - INFO - Saving checkpoint at 1000 iter\n",
|
||
"2023-07-02 20:49:34,548 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_800\n",
|
||
"2023-07-02 20:49:34,551 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 13830, evaluation/acc: 0.7003, evaluation/loss: 2.0893, loss: 2.7594\n",
|
||
"2023-07-02 20:49:37,631 - modelscope - INFO - epoch [1][1005/4982]\tlr: 9.183e-05, memory: 13830, loss: 1.3188\n",
|
||
"2023-07-02 20:49:40,106 - modelscope - INFO - epoch [1][1010/4982]\tlr: 9.175e-05, memory: 13830, loss: 2.3094\n",
|
||
"2023-07-02 20:49:42,559 - modelscope - INFO - epoch [1][1015/4982]\tlr: 9.167e-05, memory: 13830, loss: 2.4734\n",
|
||
"2023-07-02 20:49:44,919 - modelscope - INFO - epoch [1][1020/4982]\tlr: 9.158e-05, memory: 13830, loss: 2.0336\n",
|
||
"2023-07-02 20:49:49,264 - modelscope - INFO - epoch [1][1025/4982]\tlr: 9.150e-05, memory: 13861, loss: 1.0523\n",
|
||
"2023-07-02 20:49:51,204 - modelscope - INFO - epoch [1][1030/4982]\tlr: 9.141e-05, memory: 13861, loss: 3.1086\n",
|
||
"2023-07-02 20:49:53,066 - modelscope - INFO - epoch [1][1035/4982]\tlr: 9.133e-05, memory: 13861, loss: 2.3414\n",
|
||
"2023-07-02 20:49:56,035 - modelscope - INFO - epoch [1][1040/4982]\tlr: 9.124e-05, memory: 13861, loss: 2.2359\n",
|
||
"2023-07-02 20:49:59,351 - modelscope - INFO - epoch [1][1045/4982]\tlr: 9.116e-05, memory: 13861, loss: 1.9051\n",
|
||
"2023-07-02 20:50:01,989 - modelscope - INFO - epoch [1][1050/4982]\tlr: 9.107e-05, memory: 13861, loss: 1.5266\n",
|
||
"2023-07-02 20:50:04,982 - modelscope - INFO - epoch [1][1055/4982]\tlr: 9.098e-05, memory: 13861, loss: 2.5000\n",
|
||
"2023-07-02 20:50:07,348 - modelscope - INFO - epoch [1][1060/4982]\tlr: 9.090e-05, memory: 13861, loss: 2.9164\n",
|
||
"2023-07-02 20:50:10,149 - modelscope - INFO - epoch [1][1065/4982]\tlr: 9.081e-05, memory: 13861, loss: 2.1641\n",
|
||
"2023-07-02 20:50:13,289 - modelscope - INFO - epoch [1][1070/4982]\tlr: 9.072e-05, memory: 13861, loss: 2.7469\n",
|
||
"2023-07-02 20:50:16,220 - modelscope - INFO - epoch [1][1075/4982]\tlr: 9.063e-05, memory: 13861, loss: 2.2922\n",
|
||
"2023-07-02 20:50:18,255 - modelscope - INFO - epoch [1][1080/4982]\tlr: 9.054e-05, memory: 13861, loss: 3.7016\n",
|
||
"2023-07-02 20:50:21,566 - modelscope - INFO - epoch [1][1085/4982]\tlr: 9.046e-05, memory: 13861, loss: 1.1164\n",
|
||
"2023-07-02 20:50:24,961 - modelscope - INFO - epoch [1][1090/4982]\tlr: 9.037e-05, memory: 13861, loss: 1.5523\n",
|
||
"2023-07-02 20:50:28,072 - modelscope - INFO - epoch [1][1095/4982]\tlr: 9.028e-05, memory: 13861, loss: 1.9781\n",
|
||
"2023-07-02 20:50:31,178 - modelscope - INFO - epoch [1][1100/4982]\tlr: 9.019e-05, memory: 13861, loss: 2.0867\n",
|
||
"2023-07-02 20:50:33,103 - modelscope - INFO - epoch [1][1105/4982]\tlr: 9.010e-05, memory: 13861, loss: 2.9258\n",
|
||
"2023-07-02 20:50:37,069 - modelscope - INFO - epoch [1][1110/4982]\tlr: 9.001e-05, memory: 14281, loss: 1.8297\n",
|
||
"2023-07-02 20:50:39,077 - modelscope - INFO - epoch [1][1115/4982]\tlr: 8.992e-05, memory: 14281, loss: 2.1539\n",
|
||
"2023-07-02 20:50:41,028 - modelscope - INFO - epoch [1][1120/4982]\tlr: 8.982e-05, memory: 14281, loss: 2.4891\n",
|
||
"2023-07-02 20:50:43,285 - modelscope - INFO - epoch [1][1125/4982]\tlr: 8.973e-05, memory: 14281, loss: 1.7930\n",
|
||
"2023-07-02 20:50:46,047 - modelscope - INFO - epoch [1][1130/4982]\tlr: 8.964e-05, memory: 14281, loss: 1.1984\n",
|
||
"2023-07-02 20:50:49,011 - modelscope - INFO - epoch [1][1135/4982]\tlr: 8.955e-05, memory: 14281, loss: 3.1102\n",
|
||
"2023-07-02 20:50:51,386 - modelscope - INFO - epoch [1][1140/4982]\tlr: 8.946e-05, memory: 14281, loss: 2.2969\n",
|
||
"2023-07-02 20:50:54,463 - modelscope - INFO - epoch [1][1145/4982]\tlr: 8.936e-05, memory: 14281, loss: 1.7891\n",
|
||
"2023-07-02 20:50:56,539 - modelscope - INFO - epoch [1][1150/4982]\tlr: 8.927e-05, memory: 14281, loss: 2.6641\n",
|
||
"2023-07-02 20:50:58,715 - modelscope - INFO - epoch [1][1155/4982]\tlr: 8.918e-05, memory: 14281, loss: 2.5141\n",
|
||
"2023-07-02 20:51:01,359 - modelscope - INFO - epoch [1][1160/4982]\tlr: 8.908e-05, memory: 14281, loss: 1.7031\n",
|
||
"2023-07-02 20:51:04,218 - modelscope - INFO - epoch [1][1165/4982]\tlr: 8.899e-05, memory: 14281, loss: 2.7891\n",
|
||
"2023-07-02 20:51:07,009 - modelscope - INFO - epoch [1][1170/4982]\tlr: 8.889e-05, memory: 14281, loss: 1.6977\n",
|
||
"2023-07-02 20:51:09,989 - modelscope - INFO - epoch [1][1175/4982]\tlr: 8.880e-05, memory: 14281, loss: 1.7984\n",
|
||
"2023-07-02 20:51:13,347 - modelscope - INFO - epoch [1][1180/4982]\tlr: 8.870e-05, memory: 14281, loss: 1.7750\n",
|
||
"2023-07-02 20:51:16,349 - modelscope - INFO - epoch [1][1185/4982]\tlr: 8.861e-05, memory: 14281, loss: 2.2219\n",
|
||
"2023-07-02 20:51:18,901 - modelscope - INFO - epoch [1][1190/4982]\tlr: 8.851e-05, memory: 14281, loss: 2.1070\n",
|
||
"2023-07-02 20:51:22,332 - modelscope - INFO - epoch [1][1195/4982]\tlr: 8.841e-05, memory: 14281, loss: 1.3805\n",
|
||
"2023-07-02 20:51:25,298 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 20:52:31,792 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
|
||
"2023-07-02 20:52:31,820 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1000_acc0.7003207802772522\n",
|
||
"2023-07-02 20:52:31,822 - modelscope - INFO - Saving checkpoint at 1200 iter\n",
|
||
"2023-07-02 20:52:31,848 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1000\n",
|
||
"2023-07-02 20:52:31,851 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7126, evaluation/loss: 1.9764, loss: 1.4297\n",
|
||
"2023-07-02 20:52:35,250 - modelscope - INFO - epoch [1][1205/4982]\tlr: 8.822e-05, memory: 14281, loss: 1.4805\n",
|
||
"2023-07-02 20:52:38,308 - modelscope - INFO - epoch [1][1210/4982]\tlr: 8.812e-05, memory: 14281, loss: 1.6289\n",
|
||
"2023-07-02 20:52:40,236 - modelscope - INFO - epoch [1][1215/4982]\tlr: 8.803e-05, memory: 14281, loss: 1.6109\n",
|
||
"2023-07-02 20:52:42,979 - modelscope - INFO - epoch [1][1220/4982]\tlr: 8.793e-05, memory: 14281, loss: 1.8672\n",
|
||
"2023-07-02 20:52:45,670 - modelscope - INFO - epoch [1][1225/4982]\tlr: 8.783e-05, memory: 14281, loss: 1.7875\n",
|
||
"2023-07-02 20:52:48,769 - modelscope - INFO - epoch [1][1230/4982]\tlr: 8.773e-05, memory: 14281, loss: 2.9453\n",
|
||
"2023-07-02 20:52:51,329 - modelscope - INFO - epoch [1][1235/4982]\tlr: 8.763e-05, memory: 14281, loss: 3.7453\n",
|
||
"2023-07-02 20:52:54,457 - modelscope - INFO - epoch [1][1240/4982]\tlr: 8.753e-05, memory: 14281, loss: 1.6602\n",
|
||
"2023-07-02 20:52:57,272 - modelscope - INFO - epoch [1][1245/4982]\tlr: 8.743e-05, memory: 14281, loss: 1.9398\n",
|
||
"2023-07-02 20:52:59,875 - modelscope - INFO - epoch [1][1250/4982]\tlr: 8.733e-05, memory: 14281, loss: 2.6437\n",
|
||
"2023-07-02 20:53:03,234 - modelscope - INFO - epoch [1][1255/4982]\tlr: 8.723e-05, memory: 14281, loss: 1.9438\n",
|
||
"2023-07-02 20:53:05,817 - modelscope - INFO - epoch [1][1260/4982]\tlr: 8.713e-05, memory: 14281, loss: 2.0344\n",
|
||
"2023-07-02 20:53:07,576 - modelscope - INFO - epoch [1][1265/4982]\tlr: 8.703e-05, memory: 14281, loss: 3.1516\n",
|
||
"2023-07-02 20:53:10,222 - modelscope - INFO - epoch [1][1270/4982]\tlr: 8.693e-05, memory: 14281, loss: 1.7117\n",
|
||
"2023-07-02 20:53:14,014 - modelscope - INFO - epoch [1][1275/4982]\tlr: 8.683e-05, memory: 14281, loss: 1.1664\n",
|
||
"2023-07-02 20:53:16,657 - modelscope - INFO - epoch [1][1280/4982]\tlr: 8.673e-05, memory: 14281, loss: 2.4438\n",
|
||
"2023-07-02 20:53:19,474 - modelscope - INFO - epoch [1][1285/4982]\tlr: 8.663e-05, memory: 14281, loss: 1.6219\n",
|
||
"2023-07-02 20:53:22,505 - modelscope - INFO - epoch [1][1290/4982]\tlr: 8.652e-05, memory: 14281, loss: 1.4367\n",
|
||
"2023-07-02 20:53:25,260 - modelscope - INFO - epoch [1][1295/4982]\tlr: 8.642e-05, memory: 14281, loss: 2.8367\n",
|
||
"2023-07-02 20:53:27,856 - modelscope - INFO - epoch [1][1300/4982]\tlr: 8.632e-05, memory: 14281, loss: 2.7094\n",
|
||
"2023-07-02 20:53:30,269 - modelscope - INFO - epoch [1][1305/4982]\tlr: 8.621e-05, memory: 14281, loss: 2.2687\n",
|
||
"2023-07-02 20:53:32,850 - modelscope - INFO - epoch [1][1310/4982]\tlr: 8.611e-05, memory: 14281, loss: 1.6922\n",
|
||
"2023-07-02 20:53:35,441 - modelscope - INFO - epoch [1][1315/4982]\tlr: 8.601e-05, memory: 14281, loss: 1.6664\n",
|
||
"2023-07-02 20:53:38,415 - modelscope - INFO - epoch [1][1320/4982]\tlr: 8.590e-05, memory: 14281, loss: 1.8898\n",
|
||
"2023-07-02 20:53:41,871 - modelscope - INFO - epoch [1][1325/4982]\tlr: 8.580e-05, memory: 14281, loss: 1.3605\n",
|
||
"2023-07-02 20:53:44,517 - modelscope - INFO - epoch [1][1330/4982]\tlr: 8.569e-05, memory: 14281, loss: 1.8219\n",
|
||
"2023-07-02 20:53:46,642 - modelscope - INFO - epoch [1][1335/4982]\tlr: 8.559e-05, memory: 14281, loss: 2.2359\n",
|
||
"2023-07-02 20:53:49,682 - modelscope - INFO - epoch [1][1340/4982]\tlr: 8.548e-05, memory: 14281, loss: 1.8867\n",
|
||
"2023-07-02 20:53:52,314 - modelscope - INFO - epoch [1][1345/4982]\tlr: 8.538e-05, memory: 14281, loss: 1.0359\n",
|
||
"2023-07-02 20:53:53,796 - modelscope - INFO - epoch [1][1350/4982]\tlr: 8.527e-05, memory: 14281, loss: 3.0266\n",
|
||
"2023-07-02 20:53:55,582 - modelscope - INFO - epoch [1][1355/4982]\tlr: 8.516e-05, memory: 14281, loss: 3.4328\n",
|
||
"2023-07-02 20:53:57,793 - modelscope - INFO - epoch [1][1360/4982]\tlr: 8.506e-05, memory: 14281, loss: 1.6180\n",
|
||
"2023-07-02 20:54:00,871 - modelscope - INFO - epoch [1][1365/4982]\tlr: 8.495e-05, memory: 14281, loss: 1.6867\n",
|
||
"2023-07-02 20:54:03,738 - modelscope - INFO - epoch [1][1370/4982]\tlr: 8.484e-05, memory: 14281, loss: 1.8242\n",
|
||
"2023-07-02 20:54:05,352 - modelscope - INFO - epoch [1][1375/4982]\tlr: 8.474e-05, memory: 14281, loss: 3.2016\n",
|
||
"2023-07-02 20:54:08,417 - modelscope - INFO - epoch [1][1380/4982]\tlr: 8.463e-05, memory: 14281, loss: 1.9574\n",
|
||
"2023-07-02 20:54:11,057 - modelscope - INFO - epoch [1][1385/4982]\tlr: 8.452e-05, memory: 14281, loss: 2.2539\n",
|
||
"2023-07-02 20:54:13,691 - modelscope - INFO - epoch [1][1390/4982]\tlr: 8.441e-05, memory: 14281, loss: 1.7277\n",
|
||
"2023-07-02 20:54:17,235 - modelscope - INFO - epoch [1][1395/4982]\tlr: 8.430e-05, memory: 14281, loss: 1.1039\n",
|
||
"2023-07-02 20:54:18,839 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
|
||
"2023-07-02 20:55:25,409 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
|
||
"2023-07-02 20:55:25,440 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1200_acc0.7125999927520752\n",
|
||
"2023-07-02 20:55:25,442 - modelscope - INFO - Saving checkpoint at 1400 iter\n",
|
||
"2023-07-02 20:55:25,472 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1200\n",
|
||
"2023-07-02 20:55:25,475 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7218, evaluation/loss: 1.9104, loss: 1.8773\n",
|
||
"2023-07-02 20:55:28,676 - modelscope - INFO - epoch [1][1405/4982]\tlr: 8.408e-05, memory: 14281, loss: 2.2473\n",
|
||
"2023-07-02 20:55:32,047 - modelscope - INFO - epoch [1][1410/4982]\tlr: 8.397e-05, memory: 14281, loss: 1.2844\n",
|
||
"2023-07-02 20:55:34,358 - modelscope - INFO - epoch [1][1415/4982]\tlr: 8.386e-05, memory: 14281, loss: 2.6406\n",
|
||
"2023-07-02 20:55:37,290 - modelscope - INFO - epoch [1][1420/4982]\tlr: 8.375e-05, memory: 14281, loss: 1.2020\n",
|
||
"2023-07-02 20:55:39,572 - modelscope - INFO - epoch [1][1425/4982]\tlr: 8.364e-05, memory: 14281, loss: 2.3109\n",
|
||
"2023-07-02 20:55:41,133 - modelscope - INFO - epoch [1][1430/4982]\tlr: 8.353e-05, memory: 14281, loss: 3.6844\n",
|
||
"2023-07-02 20:55:44,293 - modelscope - INFO - epoch [1][1435/4982]\tlr: 8.342e-05, memory: 14281, loss: 1.2117\n",
|
||
"2023-07-02 20:55:47,573 - modelscope - INFO - epoch [1][1440/4982]\tlr: 8.331e-05, memory: 14281, loss: 1.3582\n",
|
||
"2023-07-02 20:55:49,943 - modelscope - INFO - epoch [1][1445/4982]\tlr: 8.320e-05, memory: 14281, loss: 1.8289\n",
|
||
"2023-07-02 20:55:52,281 - modelscope - INFO - epoch [1][1450/4982]\tlr: 8.309e-05, memory: 14281, loss: 1.6055\n",
|
||
"2023-07-02 20:55:55,483 - modelscope - INFO - epoch [1][1455/4982]\tlr: 8.297e-05, memory: 14281, loss: 0.7688\n",
|
||
"2023-07-02 20:55:57,759 - modelscope - INFO - epoch [1][1460/4982]\tlr: 8.286e-05, memory: 14281, loss: 2.2945\n",
|
||
"2023-07-02 20:56:00,237 - modelscope - INFO - epoch [1][1465/4982]\tlr: 8.275e-05, memory: 14281, loss: 1.8000\n",
|
||
"2023-07-02 20:56:03,402 - modelscope - INFO - epoch [1][1470/4982]\tlr: 8.264e-05, memory: 14281, loss: 1.0266\n",
|
||
"2023-07-02 20:56:04,994 - modelscope - INFO - epoch [1][1475/4982]\tlr: 8.252e-05, memory: 14281, loss: 2.0094\n",
|
||
"2023-07-02 20:56:06,787 - modelscope - INFO - epoch [1][1480/4982]\tlr: 8.241e-05, memory: 14281, loss: 1.9977\n",
|
||
"2023-07-02 20:56:09,900 - modelscope - INFO - epoch [1][1485/4982]\tlr: 8.230e-05, memory: 14281, loss: 2.0945\n",
|
||
"2023-07-02 20:56:12,226 - modelscope - INFO - epoch [1][1490/4982]\tlr: 8.218e-05, memory: 14281, loss: 2.9172\n",
|
||
"2023-07-02 20:56:14,763 - modelscope - INFO - epoch [1][1495/4982]\tlr: 8.207e-05, memory: 14281, loss: 1.8367\n",
|
||
"2023-07-02 20:56:17,535 - modelscope - INFO - epoch [1][1500/4982]\tlr: 8.195e-05, memory: 14281, loss: 1.4617\n",
|
||
"2023-07-02 20:56:19,733 - modelscope - INFO - epoch [1][1505/4982]\tlr: 8.184e-05, memory: 14281, loss: 1.9328\n",
|
||
"2023-07-02 20:56:22,653 - modelscope - INFO - epoch [1][1510/4982]\tlr: 8.172e-05, memory: 14281, loss: 1.5078\n",
|
||
"2023-07-02 20:56:26,133 - modelscope - INFO - epoch [1][1515/4982]\tlr: 8.161e-05, memory: 14281, loss: 2.1977\n",
|
||
"2023-07-02 20:56:28,551 - modelscope - INFO - epoch [1][1520/4982]\tlr: 8.149e-05, memory: 14281, loss: 2.2246\n",
|
||
"2023-07-02 20:56:31,182 - modelscope - INFO - epoch [1][1525/4982]\tlr: 8.138e-05, memory: 14281, loss: 1.9840\n",
|
||
"2023-07-02 20:56:33,710 - modelscope - INFO - epoch [1][1530/4982]\tlr: 8.126e-05, memory: 14281, loss: 1.5406\n",
|
||
"2023-07-02 20:56:36,337 - modelscope - INFO - epoch [1][1535/4982]\tlr: 8.114e-05, memory: 14281, loss: 1.9930\n",
|
||
"2023-07-02 20:56:39,530 - modelscope - INFO - epoch [1][1540/4982]\tlr: 8.103e-05, memory: 14281, loss: 1.8547\n",
|
||
"2023-07-02 20:56:42,288 - modelscope - INFO - epoch [1][1545/4982]\tlr: 8.091e-05, memory: 14281, loss: 1.2977\n",
|
||
"2023-07-02 20:56:44,838 - modelscope - INFO - epoch [1][1550/4982]\tlr: 8.079e-05, memory: 14281, loss: 1.9984\n",
|
||
"2023-07-02 20:56:46,590 - modelscope - INFO - epoch [1][1555/4982]\tlr: 8.068e-05, memory: 14281, loss: 3.7969\n",
|
||
"2023-07-02 20:56:49,311 - modelscope - INFO - epoch [1][1560/4982]\tlr: 8.056e-05, memory: 14281, loss: 3.0336\n",
|
||
"2023-07-02 20:56:52,158 - modelscope - INFO - epoch [1][1565/4982]\tlr: 8.044e-05, memory: 14281, loss: 1.2789\n",
|
||
"2023-07-02 20:56:54,583 - modelscope - INFO - epoch [1][1570/4982]\tlr: 8.032e-05, memory: 14281, loss: 2.0461\n",
|
||
"2023-07-02 20:56:57,318 - modelscope - INFO - epoch [1][1575/4982]\tlr: 8.020e-05, memory: 14281, loss: 1.3301\n",
|
||
"2023-07-02 20:57:00,187 - modelscope - INFO - epoch [1][1580/4982]\tlr: 8.008e-05, memory: 14281, loss: 1.4945\n",
|
||
"2023-07-02 20:57:02,809 - modelscope - INFO - epoch [1][1585/4982]\tlr: 7.997e-05, memory: 14281, loss: 1.7984\n",
|
||
"2023-07-02 20:57:05,103 - modelscope - INFO - epoch [1][1590/4982]\tlr: 7.985e-05, memory: 14281, loss: 2.2133\n",
|
||
"2023-07-02 20:57:07,880 - modelscope - INFO - epoch [1][1595/4982]\tlr: 7.973e-05, memory: 14281, loss: 1.4664\n",
|
||
"2023-07-02 20:57:10,754 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
|
||
"2023-07-02 20:58:17,336 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
|
||
"2023-07-02 20:58:17,364 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1400_acc0.7218371033668518\n",
|
||
"2023-07-02 20:58:17,366 - modelscope - INFO - Saving checkpoint at 1600 iter\n",
|
||
"2023-07-02 20:58:17,392 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1400\n",
|
||
"2023-07-02 20:58:17,395 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7349, evaluation/loss: 1.8596, loss: 0.7406\n",
|
||
"2023-07-02 20:58:19,762 - modelscope - INFO - epoch [1][1605/4982]\tlr: 7.949e-05, memory: 14281, loss: 2.4625\n",
|
||
"2023-07-02 20:58:22,187 - modelscope - INFO - epoch [1][1610/4982]\tlr: 7.937e-05, memory: 14281, loss: 2.0211\n",
|
||
"2023-07-02 20:58:24,593 - modelscope - INFO - epoch [1][1615/4982]\tlr: 7.925e-05, memory: 14281, loss: 1.8141\n",
|
||
"2023-07-02 20:58:26,348 - modelscope - INFO - epoch [1][1620/4982]\tlr: 7.913e-05, memory: 14281, loss: 2.8254\n",
|
||
"2023-07-02 20:58:28,996 - modelscope - INFO - epoch [1][1625/4982]\tlr: 7.900e-05, memory: 14281, loss: 1.3973\n",
|
||
"2023-07-02 20:58:31,382 - modelscope - INFO - epoch [1][1630/4982]\tlr: 7.888e-05, memory: 14281, loss: 2.4805\n",
|
||
"2023-07-02 20:58:34,123 - modelscope - INFO - epoch [1][1635/4982]\tlr: 7.876e-05, memory: 14281, loss: 1.2414\n",
|
||
"2023-07-02 20:58:37,249 - modelscope - INFO - epoch [1][1640/4982]\tlr: 7.864e-05, memory: 14281, loss: 1.7254\n",
|
||
"2023-07-02 20:58:40,060 - modelscope - INFO - epoch [1][1645/4982]\tlr: 7.852e-05, memory: 14281, loss: 2.1672\n",
|
||
"2023-07-02 20:58:42,200 - modelscope - INFO - epoch [1][1650/4982]\tlr: 7.840e-05, memory: 14281, loss: 2.4047\n",
|
||
"2023-07-02 20:58:44,560 - modelscope - INFO - epoch [1][1655/4982]\tlr: 7.827e-05, memory: 14281, loss: 1.7063\n",
|
||
"2023-07-02 20:58:47,535 - modelscope - INFO - epoch [1][1660/4982]\tlr: 7.815e-05, memory: 14281, loss: 1.3406\n",
|
||
"2023-07-02 20:58:50,161 - modelscope - INFO - epoch [1][1665/4982]\tlr: 7.803e-05, memory: 14281, loss: 2.4453\n",
|
||
"2023-07-02 20:58:52,380 - modelscope - INFO - epoch [1][1670/4982]\tlr: 7.791e-05, memory: 14281, loss: 1.7500\n",
|
||
"2023-07-02 20:58:54,351 - modelscope - INFO - epoch [1][1675/4982]\tlr: 7.778e-05, memory: 14281, loss: 2.8453\n",
|
||
"2023-07-02 20:58:55,966 - modelscope - INFO - epoch [1][1680/4982]\tlr: 7.766e-05, memory: 14281, loss: 1.8719\n",
|
||
"2023-07-02 20:58:58,457 - modelscope - INFO - epoch [1][1685/4982]\tlr: 7.754e-05, memory: 14281, loss: 2.1156\n",
|
||
"2023-07-02 20:59:01,212 - modelscope - INFO - epoch [1][1690/4982]\tlr: 7.741e-05, memory: 14281, loss: 1.7188\n",
|
||
"2023-07-02 20:59:04,057 - modelscope - INFO - epoch [1][1695/4982]\tlr: 7.729e-05, memory: 14281, loss: 2.5672\n",
|
||
"2023-07-02 20:59:07,177 - modelscope - INFO - epoch [1][1700/4982]\tlr: 7.716e-05, memory: 14281, loss: 1.0508\n",
|
||
"2023-07-02 20:59:09,355 - modelscope - INFO - epoch [1][1705/4982]\tlr: 7.704e-05, memory: 14281, loss: 1.8687\n",
|
||
"2023-07-02 20:59:11,209 - modelscope - INFO - epoch [1][1710/4982]\tlr: 7.691e-05, memory: 14281, loss: 2.7281\n",
|
||
"2023-07-02 20:59:14,101 - modelscope - INFO - epoch [1][1715/4982]\tlr: 7.679e-05, memory: 14281, loss: 1.0727\n",
|
||
"2023-07-02 20:59:16,660 - modelscope - INFO - epoch [1][1720/4982]\tlr: 7.666e-05, memory: 14281, loss: 1.6773\n",
|
||
"2023-07-02 20:59:18,798 - modelscope - INFO - epoch [1][1725/4982]\tlr: 7.654e-05, memory: 14281, loss: 2.3687\n",
|
||
"2023-07-02 20:59:20,724 - modelscope - INFO - epoch [1][1730/4982]\tlr: 7.641e-05, memory: 14281, loss: 1.9219\n",
|
||
"2023-07-02 20:59:23,591 - modelscope - INFO - epoch [1][1735/4982]\tlr: 7.629e-05, memory: 14281, loss: 1.5344\n",
|
||
"2023-07-02 20:59:27,214 - modelscope - INFO - epoch [1][1740/4982]\tlr: 7.616e-05, memory: 14281, loss: 0.5793\n",
|
||
"2023-07-02 20:59:29,708 - modelscope - INFO - epoch [1][1745/4982]\tlr: 7.603e-05, memory: 14281, loss: 1.4609\n",
|
||
"2023-07-02 20:59:32,082 - modelscope - INFO - epoch [1][1750/4982]\tlr: 7.591e-05, memory: 14281, loss: 1.0852\n",
|
||
"2023-07-02 20:59:34,683 - modelscope - INFO - epoch [1][1755/4982]\tlr: 7.578e-05, memory: 14281, loss: 1.5297\n",
|
||
"2023-07-02 20:59:36,962 - modelscope - INFO - epoch [1][1760/4982]\tlr: 7.565e-05, memory: 14281, loss: 2.9937\n",
|
||
"2023-07-02 20:59:39,715 - modelscope - INFO - epoch [1][1765/4982]\tlr: 7.553e-05, memory: 14281, loss: 2.1242\n",
|
||
"2023-07-02 20:59:42,455 - modelscope - INFO - epoch [1][1770/4982]\tlr: 7.540e-05, memory: 14281, loss: 2.3789\n",
|
||
"2023-07-02 20:59:45,020 - modelscope - INFO - epoch [1][1775/4982]\tlr: 7.527e-05, memory: 14281, loss: 1.8289\n",
|
||
"2023-07-02 20:59:46,865 - modelscope - INFO - epoch [1][1780/4982]\tlr: 7.515e-05, memory: 14281, loss: 2.0219\n",
|
||
"2023-07-02 20:59:50,367 - modelscope - INFO - epoch [1][1785/4982]\tlr: 7.502e-05, memory: 14281, loss: 2.6187\n",
|
||
"2023-07-02 20:59:52,626 - modelscope - INFO - epoch [1][1790/4982]\tlr: 7.489e-05, memory: 14281, loss: 2.3051\n",
|
||
"2023-07-02 20:59:54,711 - modelscope - INFO - epoch [1][1795/4982]\tlr: 7.476e-05, memory: 14281, loss: 2.3953\n",
|
||
"2023-07-02 20:59:56,419 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
|
||
"2023-07-02 21:01:03,053 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
|
||
"2023-07-02 21:01:03,080 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1600_acc0.7349275350570679\n",
|
||
"2023-07-02 21:01:03,082 - modelscope - INFO - Saving checkpoint at 1800 iter\n",
|
||
"2023-07-02 21:01:03,106 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1600\n",
|
||
"2023-07-02 21:01:03,109 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7401, evaluation/loss: 1.8176, loss: 2.8625\n",
|
||
"2023-07-02 21:01:05,753 - modelscope - INFO - epoch [1][1805/4982]\tlr: 7.450e-05, memory: 14281, loss: 1.8352\n",
|
||
"2023-07-02 21:01:08,030 - modelscope - INFO - epoch [1][1810/4982]\tlr: 7.438e-05, memory: 14281, loss: 2.1453\n",
|
||
"2023-07-02 21:01:10,702 - modelscope - INFO - epoch [1][1815/4982]\tlr: 7.425e-05, memory: 14281, loss: 1.6281\n",
|
||
"2023-07-02 21:01:13,348 - modelscope - INFO - epoch [1][1820/4982]\tlr: 7.412e-05, memory: 14281, loss: 2.3008\n",
|
||
"2023-07-02 21:01:16,272 - modelscope - INFO - epoch [1][1825/4982]\tlr: 7.399e-05, memory: 14281, loss: 2.2414\n",
|
||
"2023-07-02 21:01:19,067 - modelscope - INFO - epoch [1][1830/4982]\tlr: 7.386e-05, memory: 14281, loss: 2.8672\n",
|
||
"2023-07-02 21:01:21,555 - modelscope - INFO - epoch [1][1835/4982]\tlr: 7.373e-05, memory: 14281, loss: 2.3172\n",
|
||
"2023-07-02 21:01:24,755 - modelscope - INFO - epoch [1][1840/4982]\tlr: 7.360e-05, memory: 14281, loss: 0.9746\n",
|
||
"2023-07-02 21:01:27,186 - modelscope - INFO - epoch [1][1845/4982]\tlr: 7.347e-05, memory: 14281, loss: 1.4992\n",
|
||
"2023-07-02 21:01:30,804 - modelscope - INFO - epoch [1][1850/4982]\tlr: 7.334e-05, memory: 14281, loss: 2.0031\n",
|
||
"2023-07-02 21:01:34,075 - modelscope - INFO - epoch [1][1855/4982]\tlr: 7.321e-05, memory: 14281, loss: 1.3766\n",
|
||
"2023-07-02 21:01:36,465 - modelscope - INFO - epoch [1][1860/4982]\tlr: 7.308e-05, memory: 14281, loss: 2.3203\n",
|
||
"2023-07-02 21:01:39,721 - modelscope - INFO - epoch [1][1865/4982]\tlr: 7.295e-05, memory: 14281, loss: 2.5617\n",
|
||
"2023-07-02 21:01:43,444 - modelscope - INFO - epoch [1][1870/4982]\tlr: 7.281e-05, memory: 14281, loss: 0.8551\n",
|
||
"2023-07-02 21:01:46,641 - modelscope - INFO - epoch [1][1875/4982]\tlr: 7.268e-05, memory: 14281, loss: 2.1117\n",
|
||
"2023-07-02 21:01:49,075 - modelscope - INFO - epoch [1][1880/4982]\tlr: 7.255e-05, memory: 14281, loss: 1.9414\n",
|
||
"2023-07-02 21:01:51,733 - modelscope - INFO - epoch [1][1885/4982]\tlr: 7.242e-05, memory: 14281, loss: 1.3805\n",
|
||
"2023-07-02 21:01:54,863 - modelscope - INFO - epoch [1][1890/4982]\tlr: 7.229e-05, memory: 14281, loss: 2.0562\n",
|
||
"2023-07-02 21:01:56,818 - modelscope - INFO - epoch [1][1895/4982]\tlr: 7.216e-05, memory: 14281, loss: 2.2391\n",
|
||
"2023-07-02 21:01:59,267 - modelscope - INFO - epoch [1][1900/4982]\tlr: 7.202e-05, memory: 14281, loss: 2.3027\n",
|
||
"2023-07-02 21:02:01,900 - modelscope - INFO - epoch [1][1905/4982]\tlr: 7.189e-05, memory: 14281, loss: 1.8711\n",
|
||
"2023-07-02 21:02:05,392 - modelscope - INFO - epoch [1][1910/4982]\tlr: 7.176e-05, memory: 14281, loss: 1.0352\n",
|
||
"2023-07-02 21:02:07,808 - modelscope - INFO - epoch [1][1915/4982]\tlr: 7.163e-05, memory: 14281, loss: 1.9133\n",
|
||
"2023-07-02 21:02:10,597 - modelscope - INFO - epoch [1][1920/4982]\tlr: 7.149e-05, memory: 14281, loss: 1.5922\n",
|
||
"2023-07-02 21:02:13,358 - modelscope - INFO - epoch [1][1925/4982]\tlr: 7.136e-05, memory: 14281, loss: 2.3203\n",
|
||
"2023-07-02 21:02:15,288 - modelscope - INFO - epoch [1][1930/4982]\tlr: 7.123e-05, memory: 14281, loss: 1.5707\n",
|
||
"2023-07-02 21:02:17,292 - modelscope - INFO - epoch [1][1935/4982]\tlr: 7.110e-05, memory: 14281, loss: 2.6484\n",
|
||
"2023-07-02 21:02:20,830 - modelscope - INFO - epoch [1][1940/4982]\tlr: 7.096e-05, memory: 14281, loss: 0.7172\n",
|
||
"2023-07-02 21:02:22,944 - modelscope - INFO - epoch [1][1945/4982]\tlr: 7.083e-05, memory: 14281, loss: 2.1992\n",
|
||
"2023-07-02 21:02:25,967 - modelscope - INFO - epoch [1][1950/4982]\tlr: 7.069e-05, memory: 14281, loss: 1.1105\n",
|
||
"2023-07-02 21:02:28,446 - modelscope - INFO - epoch [1][1955/4982]\tlr: 7.056e-05, memory: 14281, loss: 1.2781\n",
|
||
"2023-07-02 21:02:31,222 - modelscope - INFO - epoch [1][1960/4982]\tlr: 7.043e-05, memory: 14281, loss: 2.7156\n",
|
||
"2023-07-02 21:02:33,689 - modelscope - INFO - epoch [1][1965/4982]\tlr: 7.029e-05, memory: 14281, loss: 2.1977\n",
|
||
"2023-07-02 21:02:36,277 - modelscope - INFO - epoch [1][1970/4982]\tlr: 7.016e-05, memory: 14281, loss: 1.8652\n",
|
||
"2023-07-02 21:02:39,628 - modelscope - INFO - epoch [1][1975/4982]\tlr: 7.002e-05, memory: 14281, loss: 0.9414\n",
|
||
"2023-07-02 21:02:41,404 - modelscope - INFO - epoch [1][1980/4982]\tlr: 6.989e-05, memory: 14281, loss: 2.2672\n",
|
||
"2023-07-02 21:02:44,260 - modelscope - INFO - epoch [1][1985/4982]\tlr: 6.975e-05, memory: 14281, loss: 2.0039\n",
|
||
"2023-07-02 21:02:46,214 - modelscope - INFO - epoch [1][1990/4982]\tlr: 6.962e-05, memory: 14281, loss: 2.1391\n",
|
||
"2023-07-02 21:02:48,596 - modelscope - INFO - epoch [1][1995/4982]\tlr: 6.948e-05, memory: 14281, loss: 2.2766\n",
|
||
"2023-07-02 21:02:51,578 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
|
||
"2023-07-02 21:03:57,832 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
|
||
"2023-07-02 21:03:57,857 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter1800_acc0.7400715351104736\n",
|
||
"2023-07-02 21:03:57,860 - modelscope - INFO - Saving checkpoint at 2000 iter\n",
|
||
"2023-07-02 21:03:57,883 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_1800\n",
|
||
"2023-07-02 21:03:57,885 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14281, evaluation/acc: 0.7442, evaluation/loss: 1.7936, loss: 1.5309\n",
|
||
"2023-07-02 21:04:00,725 - modelscope - INFO - epoch [1][2005/4982]\tlr: 6.921e-05, memory: 14281, loss: 1.2211\n",
|
||
"2023-07-02 21:04:02,917 - modelscope - INFO - epoch [1][2010/4982]\tlr: 6.908e-05, memory: 14281, loss: 2.4078\n",
|
||
"2023-07-02 21:04:05,194 - modelscope - INFO - epoch [1][2015/4982]\tlr: 6.894e-05, memory: 14281, loss: 2.0891\n",
|
||
"2023-07-02 21:04:06,825 - modelscope - INFO - epoch [1][2020/4982]\tlr: 6.881e-05, memory: 14281, loss: 2.4773\n",
|
||
"2023-07-02 21:04:09,109 - modelscope - INFO - epoch [1][2025/4982]\tlr: 6.867e-05, memory: 14281, loss: 1.7293\n",
|
||
"2023-07-02 21:04:12,824 - modelscope - INFO - epoch [1][2030/4982]\tlr: 6.854e-05, memory: 14281, loss: 0.9602\n",
|
||
"2023-07-02 21:04:15,460 - modelscope - INFO - epoch [1][2035/4982]\tlr: 6.840e-05, memory: 14281, loss: 1.4973\n",
|
||
"2023-07-02 21:04:18,540 - modelscope - INFO - epoch [1][2040/4982]\tlr: 6.826e-05, memory: 14281, loss: 2.0359\n",
|
||
"2023-07-02 21:04:21,265 - modelscope - INFO - epoch [1][2045/4982]\tlr: 6.813e-05, memory: 14281, loss: 1.5586\n",
|
||
"2023-07-02 21:04:24,566 - modelscope - INFO - epoch [1][2050/4982]\tlr: 6.799e-05, memory: 14281, loss: 1.3984\n",
|
||
"2023-07-02 21:04:27,716 - modelscope - INFO - epoch [1][2055/4982]\tlr: 6.785e-05, memory: 14281, loss: 1.6156\n",
|
||
"2023-07-02 21:04:29,775 - modelscope - INFO - epoch [1][2060/4982]\tlr: 6.772e-05, memory: 14281, loss: 2.4398\n",
|
||
"2023-07-02 21:04:33,407 - modelscope - INFO - epoch [1][2065/4982]\tlr: 6.758e-05, memory: 14281, loss: 1.2191\n",
|
||
"2023-07-02 21:04:35,873 - modelscope - INFO - epoch [1][2070/4982]\tlr: 6.744e-05, memory: 14281, loss: 1.5117\n",
|
||
"2023-07-02 21:04:38,406 - modelscope - INFO - epoch [1][2075/4982]\tlr: 6.731e-05, memory: 14281, loss: 1.5688\n",
|
||
"2023-07-02 21:04:40,452 - modelscope - INFO - epoch [1][2080/4982]\tlr: 6.717e-05, memory: 14281, loss: 1.3535\n",
|
||
"2023-07-02 21:04:42,464 - modelscope - INFO - epoch [1][2085/4982]\tlr: 6.703e-05, memory: 14281, loss: 3.2313\n",
|
||
"2023-07-02 21:04:44,395 - modelscope - INFO - epoch [1][2090/4982]\tlr: 6.689e-05, memory: 14281, loss: 1.8109\n",
|
||
"2023-07-02 21:04:47,097 - modelscope - INFO - epoch [1][2095/4982]\tlr: 6.676e-05, memory: 14281, loss: 2.6109\n",
|
||
"2023-07-02 21:04:50,488 - modelscope - INFO - epoch [1][2100/4982]\tlr: 6.662e-05, memory: 14281, loss: 2.3133\n",
|
||
"2023-07-02 21:04:53,478 - modelscope - INFO - epoch [1][2105/4982]\tlr: 6.648e-05, memory: 14281, loss: 1.5336\n",
|
||
"2023-07-02 21:04:56,669 - modelscope - INFO - epoch [1][2110/4982]\tlr: 6.634e-05, memory: 14281, loss: 1.8234\n",
|
||
"2023-07-02 21:05:00,502 - modelscope - INFO - epoch [1][2115/4982]\tlr: 6.620e-05, memory: 14329, loss: 3.0766\n",
|
||
"2023-07-02 21:05:02,541 - modelscope - INFO - epoch [1][2120/4982]\tlr: 6.607e-05, memory: 14329, loss: 1.3789\n",
|
||
"2023-07-02 21:05:05,161 - modelscope - INFO - epoch [1][2125/4982]\tlr: 6.593e-05, memory: 14329, loss: 1.5391\n",
|
||
"2023-07-02 21:05:07,009 - modelscope - INFO - epoch [1][2130/4982]\tlr: 6.579e-05, memory: 14329, loss: 2.6172\n",
|
||
"2023-07-02 21:05:10,521 - modelscope - INFO - epoch [1][2135/4982]\tlr: 6.565e-05, memory: 14329, loss: 1.7750\n",
|
||
"2023-07-02 21:05:13,068 - modelscope - INFO - epoch [1][2140/4982]\tlr: 6.551e-05, memory: 14329, loss: 2.1238\n",
|
||
"2023-07-02 21:05:15,637 - modelscope - INFO - epoch [1][2145/4982]\tlr: 6.537e-05, memory: 14329, loss: 2.5039\n",
|
||
"2023-07-02 21:05:18,628 - modelscope - INFO - epoch [1][2150/4982]\tlr: 6.523e-05, memory: 14329, loss: 1.6203\n",
|
||
"2023-07-02 21:05:21,523 - modelscope - INFO - epoch [1][2155/4982]\tlr: 6.510e-05, memory: 14329, loss: 0.9555\n",
|
||
"2023-07-02 21:05:24,213 - modelscope - INFO - epoch [1][2160/4982]\tlr: 6.496e-05, memory: 14329, loss: 2.1133\n",
|
||
"2023-07-02 21:05:27,402 - modelscope - INFO - epoch [1][2165/4982]\tlr: 6.482e-05, memory: 14329, loss: 1.1963\n",
|
||
"2023-07-02 21:05:29,840 - modelscope - INFO - epoch [1][2170/4982]\tlr: 6.468e-05, memory: 14329, loss: 1.3637\n",
|
||
"2023-07-02 21:05:32,853 - modelscope - INFO - epoch [1][2175/4982]\tlr: 6.454e-05, memory: 14329, loss: 1.7201\n",
|
||
"2023-07-02 21:05:35,628 - modelscope - INFO - epoch [1][2180/4982]\tlr: 6.440e-05, memory: 14329, loss: 2.0109\n",
|
||
"2023-07-02 21:05:38,589 - modelscope - INFO - epoch [1][2185/4982]\tlr: 6.426e-05, memory: 14329, loss: 1.2418\n",
|
||
"2023-07-02 21:05:40,918 - modelscope - INFO - epoch [1][2190/4982]\tlr: 6.412e-05, memory: 14329, loss: 2.0758\n",
|
||
"2023-07-02 21:05:43,421 - modelscope - INFO - epoch [1][2195/4982]\tlr: 6.398e-05, memory: 14329, loss: 1.7094\n",
|
||
"2023-07-02 21:05:46,523 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.21it/s]\n",
|
||
"2023-07-02 21:06:53,212 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
|
||
"2023-07-02 21:06:53,240 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2000_acc0.7442383766174316\n",
|
||
"2023-07-02 21:06:53,243 - modelscope - INFO - Saving checkpoint at 2200 iter\n",
|
||
"2023-07-02 21:06:53,269 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2000\n",
|
||
"2023-07-02 21:06:53,272 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7494, evaluation/loss: 1.7767, loss: 2.1570\n",
|
||
"2023-07-02 21:06:55,998 - modelscope - INFO - epoch [1][2205/4982]\tlr: 6.370e-05, memory: 14329, loss: 1.3469\n",
|
||
"2023-07-02 21:06:59,535 - modelscope - INFO - epoch [1][2210/4982]\tlr: 6.356e-05, memory: 14329, loss: 1.3730\n",
|
||
"2023-07-02 21:07:01,992 - modelscope - INFO - epoch [1][2215/4982]\tlr: 6.342e-05, memory: 14329, loss: 2.2066\n",
|
||
"2023-07-02 21:07:04,789 - modelscope - INFO - epoch [1][2220/4982]\tlr: 6.328e-05, memory: 14329, loss: 1.7098\n",
|
||
"2023-07-02 21:07:07,714 - modelscope - INFO - epoch [1][2225/4982]\tlr: 6.314e-05, memory: 14329, loss: 2.0953\n",
|
||
"2023-07-02 21:07:09,812 - modelscope - INFO - epoch [1][2230/4982]\tlr: 6.300e-05, memory: 14329, loss: 2.3914\n",
|
||
"2023-07-02 21:07:12,315 - modelscope - INFO - epoch [1][2235/4982]\tlr: 6.286e-05, memory: 14329, loss: 2.6797\n",
|
||
"2023-07-02 21:07:15,918 - modelscope - INFO - epoch [1][2240/4982]\tlr: 6.272e-05, memory: 14329, loss: 1.3217\n",
|
||
"2023-07-02 21:07:19,044 - modelscope - INFO - epoch [1][2245/4982]\tlr: 6.258e-05, memory: 14329, loss: 1.4527\n",
|
||
"2023-07-02 21:07:21,636 - modelscope - INFO - epoch [1][2250/4982]\tlr: 6.244e-05, memory: 14329, loss: 2.1770\n",
|
||
"2023-07-02 21:07:23,761 - modelscope - INFO - epoch [1][2255/4982]\tlr: 6.230e-05, memory: 14329, loss: 1.8191\n",
|
||
"2023-07-02 21:07:25,994 - modelscope - INFO - epoch [1][2260/4982]\tlr: 6.216e-05, memory: 14329, loss: 1.3582\n",
|
||
"2023-07-02 21:07:28,770 - modelscope - INFO - epoch [1][2265/4982]\tlr: 6.202e-05, memory: 14329, loss: 1.0121\n",
|
||
"2023-07-02 21:07:32,193 - modelscope - INFO - epoch [1][2270/4982]\tlr: 6.188e-05, memory: 14329, loss: 1.0039\n",
|
||
"2023-07-02 21:07:34,881 - modelscope - INFO - epoch [1][2275/4982]\tlr: 6.174e-05, memory: 14329, loss: 1.2828\n",
|
||
"2023-07-02 21:07:37,688 - modelscope - INFO - epoch [1][2280/4982]\tlr: 6.159e-05, memory: 14329, loss: 1.4516\n",
|
||
"2023-07-02 21:07:40,006 - modelscope - INFO - epoch [1][2285/4982]\tlr: 6.145e-05, memory: 14329, loss: 1.5963\n",
|
||
"2023-07-02 21:07:42,993 - modelscope - INFO - epoch [1][2290/4982]\tlr: 6.131e-05, memory: 14329, loss: 2.7687\n",
|
||
"2023-07-02 21:07:46,133 - modelscope - INFO - epoch [1][2295/4982]\tlr: 6.117e-05, memory: 14329, loss: 1.5977\n",
|
||
"2023-07-02 21:07:47,508 - modelscope - INFO - epoch [1][2300/4982]\tlr: 6.103e-05, memory: 14329, loss: 2.5945\n",
|
||
"2023-07-02 21:07:50,902 - modelscope - INFO - epoch [1][2305/4982]\tlr: 6.089e-05, memory: 14329, loss: 1.2125\n",
|
||
"2023-07-02 21:07:53,059 - modelscope - INFO - epoch [1][2310/4982]\tlr: 6.075e-05, memory: 14329, loss: 2.2883\n",
|
||
"2023-07-02 21:07:56,237 - modelscope - INFO - epoch [1][2315/4982]\tlr: 6.061e-05, memory: 14329, loss: 0.8787\n",
|
||
"2023-07-02 21:07:59,345 - modelscope - INFO - epoch [1][2320/4982]\tlr: 6.046e-05, memory: 14329, loss: 2.6320\n",
|
||
"2023-07-02 21:08:02,587 - modelscope - INFO - epoch [1][2325/4982]\tlr: 6.032e-05, memory: 14329, loss: 1.4213\n",
|
||
"2023-07-02 21:08:04,652 - modelscope - INFO - epoch [1][2330/4982]\tlr: 6.018e-05, memory: 14329, loss: 2.7547\n",
|
||
"2023-07-02 21:08:07,208 - modelscope - INFO - epoch [1][2335/4982]\tlr: 6.004e-05, memory: 14329, loss: 2.1891\n",
|
||
"2023-07-02 21:08:09,836 - modelscope - INFO - epoch [1][2340/4982]\tlr: 5.990e-05, memory: 14329, loss: 1.9711\n",
|
||
"2023-07-02 21:08:12,642 - modelscope - INFO - epoch [1][2345/4982]\tlr: 5.976e-05, memory: 14329, loss: 1.2281\n",
|
||
"2023-07-02 21:08:15,772 - modelscope - INFO - epoch [1][2350/4982]\tlr: 5.961e-05, memory: 14329, loss: 1.1650\n",
|
||
"2023-07-02 21:08:18,568 - modelscope - INFO - epoch [1][2355/4982]\tlr: 5.947e-05, memory: 14329, loss: 1.0545\n",
|
||
"2023-07-02 21:08:21,580 - modelscope - INFO - epoch [1][2360/4982]\tlr: 5.933e-05, memory: 14329, loss: 2.3699\n",
|
||
"2023-07-02 21:08:24,345 - modelscope - INFO - epoch [1][2365/4982]\tlr: 5.919e-05, memory: 14329, loss: 1.7188\n",
|
||
"2023-07-02 21:08:27,132 - modelscope - INFO - epoch [1][2370/4982]\tlr: 5.905e-05, memory: 14329, loss: 0.8174\n",
|
||
"2023-07-02 21:08:28,995 - modelscope - INFO - epoch [1][2375/4982]\tlr: 5.891e-05, memory: 14329, loss: 2.0500\n",
|
||
"2023-07-02 21:08:32,221 - modelscope - INFO - epoch [1][2380/4982]\tlr: 5.876e-05, memory: 14329, loss: 0.8354\n",
|
||
"2023-07-02 21:08:34,747 - modelscope - INFO - epoch [1][2385/4982]\tlr: 5.862e-05, memory: 14329, loss: 1.3457\n",
|
||
"2023-07-02 21:08:38,256 - modelscope - INFO - epoch [1][2390/4982]\tlr: 5.848e-05, memory: 14329, loss: 1.9180\n",
|
||
"2023-07-02 21:08:40,701 - modelscope - INFO - epoch [1][2395/4982]\tlr: 5.834e-05, memory: 14329, loss: 1.1666\n",
|
||
"2023-07-02 21:08:43,933 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 21:09:50,373 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
|
||
"2023-07-02 21:09:50,402 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2200_acc0.749400794506073\n",
|
||
"2023-07-02 21:09:50,404 - modelscope - INFO - Saving checkpoint at 2400 iter\n",
|
||
"2023-07-02 21:09:50,432 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2200\n",
|
||
"2023-07-02 21:09:50,435 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7535, evaluation/loss: 1.7703, loss: 1.5938\n",
|
||
"2023-07-02 21:09:53,136 - modelscope - INFO - epoch [1][2405/4982]\tlr: 5.805e-05, memory: 14329, loss: 3.0355\n",
|
||
"2023-07-02 21:09:55,673 - modelscope - INFO - epoch [1][2410/4982]\tlr: 5.791e-05, memory: 14329, loss: 1.9070\n",
|
||
"2023-07-02 21:09:58,239 - modelscope - INFO - epoch [1][2415/4982]\tlr: 5.777e-05, memory: 14329, loss: 1.1090\n",
|
||
"2023-07-02 21:10:00,413 - modelscope - INFO - epoch [1][2420/4982]\tlr: 5.763e-05, memory: 14329, loss: 1.3535\n",
|
||
"2023-07-02 21:10:02,887 - modelscope - INFO - epoch [1][2425/4982]\tlr: 5.748e-05, memory: 14329, loss: 1.4563\n",
|
||
"2023-07-02 21:10:05,462 - modelscope - INFO - epoch [1][2430/4982]\tlr: 5.734e-05, memory: 14329, loss: 2.2436\n",
|
||
"2023-07-02 21:10:08,549 - modelscope - INFO - epoch [1][2435/4982]\tlr: 5.720e-05, memory: 14329, loss: 1.8266\n",
|
||
"2023-07-02 21:10:11,226 - modelscope - INFO - epoch [1][2440/4982]\tlr: 5.706e-05, memory: 14329, loss: 1.8402\n",
|
||
"2023-07-02 21:10:13,579 - modelscope - INFO - epoch [1][2445/4982]\tlr: 5.691e-05, memory: 14329, loss: 2.0742\n",
|
||
"2023-07-02 21:10:15,828 - modelscope - INFO - epoch [1][2450/4982]\tlr: 5.677e-05, memory: 14329, loss: 1.5211\n",
|
||
"2023-07-02 21:10:18,658 - modelscope - INFO - epoch [1][2455/4982]\tlr: 5.663e-05, memory: 14329, loss: 0.9520\n",
|
||
"2023-07-02 21:10:21,705 - modelscope - INFO - epoch [1][2460/4982]\tlr: 5.649e-05, memory: 14329, loss: 1.4098\n",
|
||
"2023-07-02 21:10:24,494 - modelscope - INFO - epoch [1][2465/4982]\tlr: 5.635e-05, memory: 14329, loss: 1.5748\n",
|
||
"2023-07-02 21:10:27,349 - modelscope - INFO - epoch [1][2470/4982]\tlr: 5.620e-05, memory: 14329, loss: 2.5328\n",
|
||
"2023-07-02 21:10:29,516 - modelscope - INFO - epoch [1][2475/4982]\tlr: 5.606e-05, memory: 14329, loss: 1.2904\n",
|
||
"2023-07-02 21:10:32,690 - modelscope - INFO - epoch [1][2480/4982]\tlr: 5.592e-05, memory: 14329, loss: 0.5270\n",
|
||
"2023-07-02 21:10:35,469 - modelscope - INFO - epoch [1][2485/4982]\tlr: 5.578e-05, memory: 14329, loss: 0.9842\n",
|
||
"2023-07-02 21:10:37,617 - modelscope - INFO - epoch [1][2490/4982]\tlr: 5.563e-05, memory: 14329, loss: 2.4695\n",
|
||
"2023-07-02 21:10:40,562 - modelscope - INFO - epoch [1][2495/4982]\tlr: 5.549e-05, memory: 14329, loss: 1.2441\n",
|
||
"2023-07-02 21:10:42,074 - modelscope - INFO - epoch [1][2500/4982]\tlr: 5.535e-05, memory: 14329, loss: 2.1055\n",
|
||
"2023-07-02 21:10:44,402 - modelscope - INFO - epoch [1][2505/4982]\tlr: 5.521e-05, memory: 14329, loss: 1.5461\n",
|
||
"2023-07-02 21:10:47,254 - modelscope - INFO - epoch [1][2510/4982]\tlr: 5.506e-05, memory: 14329, loss: 2.3160\n",
|
||
"2023-07-02 21:10:50,538 - modelscope - INFO - epoch [1][2515/4982]\tlr: 5.492e-05, memory: 14329, loss: 1.4293\n",
|
||
"2023-07-02 21:10:53,161 - modelscope - INFO - epoch [1][2520/4982]\tlr: 5.478e-05, memory: 14329, loss: 2.6732\n",
|
||
"2023-07-02 21:10:55,975 - modelscope - INFO - epoch [1][2525/4982]\tlr: 5.464e-05, memory: 14329, loss: 1.1059\n",
|
||
"2023-07-02 21:10:59,325 - modelscope - INFO - epoch [1][2530/4982]\tlr: 5.449e-05, memory: 14329, loss: 0.7672\n",
|
||
"2023-07-02 21:11:02,511 - modelscope - INFO - epoch [1][2535/4982]\tlr: 5.435e-05, memory: 14329, loss: 1.0480\n",
|
||
"2023-07-02 21:11:04,652 - modelscope - INFO - epoch [1][2540/4982]\tlr: 5.421e-05, memory: 14329, loss: 1.4984\n",
|
||
"2023-07-02 21:11:08,281 - modelscope - INFO - epoch [1][2545/4982]\tlr: 5.407e-05, memory: 14329, loss: 1.1805\n",
|
||
"2023-07-02 21:11:10,297 - modelscope - INFO - epoch [1][2550/4982]\tlr: 5.392e-05, memory: 14329, loss: 2.0984\n",
|
||
"2023-07-02 21:11:13,563 - modelscope - INFO - epoch [1][2555/4982]\tlr: 5.378e-05, memory: 14329, loss: 0.5590\n",
|
||
"2023-07-02 21:11:15,666 - modelscope - INFO - epoch [1][2560/4982]\tlr: 5.364e-05, memory: 14329, loss: 1.8969\n",
|
||
"2023-07-02 21:11:17,895 - modelscope - INFO - epoch [1][2565/4982]\tlr: 5.350e-05, memory: 14329, loss: 2.2344\n",
|
||
"2023-07-02 21:11:20,533 - modelscope - INFO - epoch [1][2570/4982]\tlr: 5.335e-05, memory: 14329, loss: 1.2381\n",
|
||
"2023-07-02 21:11:23,834 - modelscope - INFO - epoch [1][2575/4982]\tlr: 5.321e-05, memory: 14329, loss: 1.7533\n",
|
||
"2023-07-02 21:11:26,883 - modelscope - INFO - epoch [1][2580/4982]\tlr: 5.307e-05, memory: 14329, loss: 0.9559\n",
|
||
"2023-07-02 21:11:29,602 - modelscope - INFO - epoch [1][2585/4982]\tlr: 5.293e-05, memory: 14329, loss: 1.1484\n",
|
||
"2023-07-02 21:11:31,820 - modelscope - INFO - epoch [1][2590/4982]\tlr: 5.279e-05, memory: 14329, loss: 1.4527\n",
|
||
"2023-07-02 21:11:33,946 - modelscope - INFO - epoch [1][2595/4982]\tlr: 5.264e-05, memory: 14329, loss: 2.1156\n",
|
||
"2023-07-02 21:11:36,808 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 21:12:43,304 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
|
||
"2023-07-02 21:12:43,335 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2400_acc0.7534938454627991\n",
|
||
"2023-07-02 21:12:43,337 - modelscope - INFO - Saving checkpoint at 2600 iter\n",
|
||
"2023-07-02 21:12:43,366 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2400\n",
|
||
"2023-07-02 21:12:43,369 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7577, evaluation/loss: 1.7432, loss: 1.3414\n",
|
||
"2023-07-02 21:12:45,632 - modelscope - INFO - epoch [1][2605/4982]\tlr: 5.236e-05, memory: 14329, loss: 1.1031\n",
|
||
"2023-07-02 21:12:47,931 - modelscope - INFO - epoch [1][2610/4982]\tlr: 5.222e-05, memory: 14329, loss: 2.4422\n",
|
||
"2023-07-02 21:12:50,545 - modelscope - INFO - epoch [1][2615/4982]\tlr: 5.207e-05, memory: 14329, loss: 1.2281\n",
|
||
"2023-07-02 21:12:53,002 - modelscope - INFO - epoch [1][2620/4982]\tlr: 5.193e-05, memory: 14329, loss: 1.9912\n",
|
||
"2023-07-02 21:12:55,893 - modelscope - INFO - epoch [1][2625/4982]\tlr: 5.179e-05, memory: 14329, loss: 1.7354\n",
|
||
"2023-07-02 21:12:58,266 - modelscope - INFO - epoch [1][2630/4982]\tlr: 5.165e-05, memory: 14329, loss: 3.0562\n",
|
||
"2023-07-02 21:13:00,767 - modelscope - INFO - epoch [1][2635/4982]\tlr: 5.151e-05, memory: 14329, loss: 1.7664\n",
|
||
"2023-07-02 21:13:04,043 - modelscope - INFO - epoch [1][2640/4982]\tlr: 5.136e-05, memory: 14329, loss: 1.7547\n",
|
||
"2023-07-02 21:13:06,487 - modelscope - INFO - epoch [1][2645/4982]\tlr: 5.122e-05, memory: 14329, loss: 2.0453\n",
|
||
"2023-07-02 21:13:09,480 - modelscope - INFO - epoch [1][2650/4982]\tlr: 5.108e-05, memory: 14329, loss: 1.5508\n",
|
||
"2023-07-02 21:13:11,484 - modelscope - INFO - epoch [1][2655/4982]\tlr: 5.094e-05, memory: 14329, loss: 2.8527\n",
|
||
"2023-07-02 21:13:14,637 - modelscope - INFO - epoch [1][2660/4982]\tlr: 5.080e-05, memory: 14329, loss: 0.4787\n",
|
||
"2023-07-02 21:13:17,215 - modelscope - INFO - epoch [1][2665/4982]\tlr: 5.066e-05, memory: 14329, loss: 1.1926\n",
|
||
"2023-07-02 21:13:19,892 - modelscope - INFO - epoch [1][2670/4982]\tlr: 5.051e-05, memory: 14329, loss: 2.3055\n",
|
||
"2023-07-02 21:13:21,987 - modelscope - INFO - epoch [1][2675/4982]\tlr: 5.037e-05, memory: 14329, loss: 1.6938\n",
|
||
"2023-07-02 21:13:24,761 - modelscope - INFO - epoch [1][2680/4982]\tlr: 5.023e-05, memory: 14329, loss: 2.2922\n",
|
||
"2023-07-02 21:13:26,815 - modelscope - INFO - epoch [1][2685/4982]\tlr: 5.009e-05, memory: 14329, loss: 1.6898\n",
|
||
"2023-07-02 21:13:29,236 - modelscope - INFO - epoch [1][2690/4982]\tlr: 4.995e-05, memory: 14329, loss: 2.2826\n",
|
||
"2023-07-02 21:13:31,582 - modelscope - INFO - epoch [1][2695/4982]\tlr: 4.981e-05, memory: 14329, loss: 1.7828\n",
|
||
"2023-07-02 21:13:33,912 - modelscope - INFO - epoch [1][2700/4982]\tlr: 4.966e-05, memory: 14329, loss: 1.8785\n",
|
||
"2023-07-02 21:13:36,729 - modelscope - INFO - epoch [1][2705/4982]\tlr: 4.952e-05, memory: 14329, loss: 1.4273\n",
|
||
"2023-07-02 21:13:38,262 - modelscope - INFO - epoch [1][2710/4982]\tlr: 4.938e-05, memory: 14329, loss: 1.5227\n",
|
||
"2023-07-02 21:13:40,572 - modelscope - INFO - epoch [1][2715/4982]\tlr: 4.924e-05, memory: 14329, loss: 2.0828\n",
|
||
"2023-07-02 21:13:43,610 - modelscope - INFO - epoch [1][2720/4982]\tlr: 4.910e-05, memory: 14329, loss: 1.7301\n",
|
||
"2023-07-02 21:13:46,147 - modelscope - INFO - epoch [1][2725/4982]\tlr: 4.896e-05, memory: 14329, loss: 1.8305\n",
|
||
"2023-07-02 21:13:49,457 - modelscope - INFO - epoch [1][2730/4982]\tlr: 4.882e-05, memory: 14329, loss: 1.6883\n",
|
||
"2023-07-02 21:13:51,690 - modelscope - INFO - epoch [1][2735/4982]\tlr: 4.868e-05, memory: 14329, loss: 1.3963\n",
|
||
"2023-07-02 21:13:54,487 - modelscope - INFO - epoch [1][2740/4982]\tlr: 4.854e-05, memory: 14329, loss: 1.2293\n",
|
||
"2023-07-02 21:13:56,303 - modelscope - INFO - epoch [1][2745/4982]\tlr: 4.839e-05, memory: 14329, loss: 1.7289\n",
|
||
"2023-07-02 21:13:59,073 - modelscope - INFO - epoch [1][2750/4982]\tlr: 4.825e-05, memory: 14329, loss: 1.1637\n",
|
||
"2023-07-02 21:14:02,327 - modelscope - INFO - epoch [1][2755/4982]\tlr: 4.811e-05, memory: 14329, loss: 1.3336\n",
|
||
"2023-07-02 21:14:05,192 - modelscope - INFO - epoch [1][2760/4982]\tlr: 4.797e-05, memory: 14329, loss: 0.9352\n",
|
||
"2023-07-02 21:14:07,032 - modelscope - INFO - epoch [1][2765/4982]\tlr: 4.783e-05, memory: 14329, loss: 1.9258\n",
|
||
"2023-07-02 21:14:10,206 - modelscope - INFO - epoch [1][2770/4982]\tlr: 4.769e-05, memory: 14329, loss: 2.0555\n",
|
||
"2023-07-02 21:14:12,659 - modelscope - INFO - epoch [1][2775/4982]\tlr: 4.755e-05, memory: 14329, loss: 1.5836\n",
|
||
"2023-07-02 21:14:15,156 - modelscope - INFO - epoch [1][2780/4982]\tlr: 4.741e-05, memory: 14329, loss: 1.6203\n",
|
||
"2023-07-02 21:14:18,171 - modelscope - INFO - epoch [1][2785/4982]\tlr: 4.727e-05, memory: 14329, loss: 2.1402\n",
|
||
"2023-07-02 21:14:20,575 - modelscope - INFO - epoch [1][2790/4982]\tlr: 4.713e-05, memory: 14329, loss: 1.6504\n",
|
||
"2023-07-02 21:14:23,247 - modelscope - INFO - epoch [1][2795/4982]\tlr: 4.699e-05, memory: 14329, loss: 1.7109\n",
|
||
"2023-07-02 21:14:26,026 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 21:15:32,451 - modelscope - INFO - Saving checkpoint at 2800 iter\n",
|
||
"2023-07-02 21:15:32,483 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2600_acc0.7577160000801086\n",
|
||
"2023-07-02 21:15:32,485 - modelscope - INFO - Saving checkpoint at 2800 iter\n",
|
||
"2023-07-02 21:15:32,515 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2600\n",
|
||
"2023-07-02 21:15:32,518 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7621, evaluation/loss: 1.7451, loss: 2.2227\n",
|
||
"2023-07-02 21:15:34,950 - modelscope - INFO - epoch [1][2805/4982]\tlr: 4.671e-05, memory: 14329, loss: 2.0086\n",
|
||
"2023-07-02 21:15:38,272 - modelscope - INFO - epoch [1][2810/4982]\tlr: 4.657e-05, memory: 14329, loss: 0.8770\n",
|
||
"2023-07-02 21:15:41,346 - modelscope - INFO - epoch [1][2815/4982]\tlr: 4.643e-05, memory: 14329, loss: 0.7887\n",
|
||
"2023-07-02 21:15:43,033 - modelscope - INFO - epoch [1][2820/4982]\tlr: 4.629e-05, memory: 14329, loss: 2.8648\n",
|
||
"2023-07-02 21:15:45,965 - modelscope - INFO - epoch [1][2825/4982]\tlr: 4.615e-05, memory: 14329, loss: 1.9832\n",
|
||
"2023-07-02 21:15:48,381 - modelscope - INFO - epoch [1][2830/4982]\tlr: 4.601e-05, memory: 14329, loss: 1.4816\n",
|
||
"2023-07-02 21:15:51,262 - modelscope - INFO - epoch [1][2835/4982]\tlr: 4.587e-05, memory: 14329, loss: 1.3080\n",
|
||
"2023-07-02 21:15:53,969 - modelscope - INFO - epoch [1][2840/4982]\tlr: 4.573e-05, memory: 14329, loss: 1.2664\n",
|
||
"2023-07-02 21:15:56,145 - modelscope - INFO - epoch [1][2845/4982]\tlr: 4.559e-05, memory: 14329, loss: 2.4719\n",
|
||
"2023-07-02 21:15:58,623 - modelscope - INFO - epoch [1][2850/4982]\tlr: 4.545e-05, memory: 14329, loss: 1.0096\n",
|
||
"2023-07-02 21:16:01,537 - modelscope - INFO - epoch [1][2855/4982]\tlr: 4.532e-05, memory: 14329, loss: 1.7023\n",
|
||
"2023-07-02 21:16:05,216 - modelscope - INFO - epoch [1][2860/4982]\tlr: 4.518e-05, memory: 14329, loss: 1.8641\n",
|
||
"2023-07-02 21:16:08,050 - modelscope - INFO - epoch [1][2865/4982]\tlr: 4.504e-05, memory: 14329, loss: 2.1398\n",
|
||
"2023-07-02 21:16:10,270 - modelscope - INFO - epoch [1][2870/4982]\tlr: 4.490e-05, memory: 14329, loss: 1.9180\n",
|
||
"2023-07-02 21:16:12,856 - modelscope - INFO - epoch [1][2875/4982]\tlr: 4.476e-05, memory: 14329, loss: 1.6426\n",
|
||
"2023-07-02 21:16:15,831 - modelscope - INFO - epoch [1][2880/4982]\tlr: 4.462e-05, memory: 14329, loss: 1.9609\n",
|
||
"2023-07-02 21:16:18,475 - modelscope - INFO - epoch [1][2885/4982]\tlr: 4.448e-05, memory: 14329, loss: 1.3818\n",
|
||
"2023-07-02 21:16:21,513 - modelscope - INFO - epoch [1][2890/4982]\tlr: 4.434e-05, memory: 14329, loss: 1.8543\n",
|
||
"2023-07-02 21:16:23,561 - modelscope - INFO - epoch [1][2895/4982]\tlr: 4.421e-05, memory: 14329, loss: 1.6133\n",
|
||
"2023-07-02 21:16:25,999 - modelscope - INFO - epoch [1][2900/4982]\tlr: 4.407e-05, memory: 14329, loss: 2.2039\n",
|
||
"2023-07-02 21:16:28,248 - modelscope - INFO - epoch [1][2905/4982]\tlr: 4.393e-05, memory: 14329, loss: 1.5797\n",
|
||
"2023-07-02 21:16:31,059 - modelscope - INFO - epoch [1][2910/4982]\tlr: 4.379e-05, memory: 14329, loss: 1.0002\n",
|
||
"2023-07-02 21:16:33,522 - modelscope - INFO - epoch [1][2915/4982]\tlr: 4.365e-05, memory: 14329, loss: 1.5379\n",
|
||
"2023-07-02 21:16:35,881 - modelscope - INFO - epoch [1][2920/4982]\tlr: 4.352e-05, memory: 14329, loss: 2.8797\n",
|
||
"2023-07-02 21:16:38,582 - modelscope - INFO - epoch [1][2925/4982]\tlr: 4.338e-05, memory: 14329, loss: 2.2234\n",
|
||
"2023-07-02 21:16:41,105 - modelscope - INFO - epoch [1][2930/4982]\tlr: 4.324e-05, memory: 14329, loss: 0.9779\n",
|
||
"2023-07-02 21:16:43,610 - modelscope - INFO - epoch [1][2935/4982]\tlr: 4.310e-05, memory: 14329, loss: 1.1336\n",
|
||
"2023-07-02 21:16:46,978 - modelscope - INFO - epoch [1][2940/4982]\tlr: 4.297e-05, memory: 14329, loss: 1.7703\n",
|
||
"2023-07-02 21:16:49,719 - modelscope - INFO - epoch [1][2945/4982]\tlr: 4.283e-05, memory: 14329, loss: 2.1102\n",
|
||
"2023-07-02 21:16:52,425 - modelscope - INFO - epoch [1][2950/4982]\tlr: 4.269e-05, memory: 14329, loss: 1.6873\n",
|
||
"2023-07-02 21:16:54,893 - modelscope - INFO - epoch [1][2955/4982]\tlr: 4.256e-05, memory: 14329, loss: 1.8313\n",
|
||
"2023-07-02 21:16:58,211 - modelscope - INFO - epoch [1][2960/4982]\tlr: 4.242e-05, memory: 14329, loss: 1.2132\n",
|
||
"2023-07-02 21:17:01,430 - modelscope - INFO - epoch [1][2965/4982]\tlr: 4.228e-05, memory: 14329, loss: 1.5578\n",
|
||
"2023-07-02 21:17:04,190 - modelscope - INFO - epoch [1][2970/4982]\tlr: 4.215e-05, memory: 14329, loss: 1.1242\n",
|
||
"2023-07-02 21:17:07,777 - modelscope - INFO - epoch [1][2975/4982]\tlr: 4.201e-05, memory: 14329, loss: 1.3516\n",
|
||
"2023-07-02 21:17:11,666 - modelscope - INFO - epoch [1][2980/4982]\tlr: 4.187e-05, memory: 14329, loss: 1.2953\n",
|
||
"2023-07-02 21:17:14,548 - modelscope - INFO - epoch [1][2985/4982]\tlr: 4.174e-05, memory: 14329, loss: 2.3777\n",
|
||
"2023-07-02 21:17:17,244 - modelscope - INFO - epoch [1][2990/4982]\tlr: 4.160e-05, memory: 14329, loss: 1.8803\n",
|
||
"2023-07-02 21:17:20,544 - modelscope - INFO - epoch [1][2995/4982]\tlr: 4.147e-05, memory: 14329, loss: 1.1699\n",
|
||
"2023-07-02 21:17:22,682 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
|
||
"2023-07-02 21:18:29,245 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
|
||
"2023-07-02 21:18:29,273 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter2800_acc0.7621409296989441\n",
|
||
"2023-07-02 21:18:29,275 - modelscope - INFO - Saving checkpoint at 3000 iter\n",
|
||
"2023-07-02 21:18:29,301 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_2800\n",
|
||
"2023-07-02 21:18:29,303 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14329, evaluation/acc: 0.7655, evaluation/loss: 1.7432, loss: 1.2258\n",
|
||
"2023-07-02 21:18:31,804 - modelscope - INFO - epoch [1][3005/4982]\tlr: 4.120e-05, memory: 14329, loss: 2.2777\n",
|
||
"2023-07-02 21:18:35,465 - modelscope - INFO - epoch [1][3010/4982]\tlr: 4.106e-05, memory: 14329, loss: 1.4781\n",
|
||
"2023-07-02 21:18:38,255 - modelscope - INFO - epoch [1][3015/4982]\tlr: 4.092e-05, memory: 14329, loss: 1.4242\n",
|
||
"2023-07-02 21:18:41,641 - modelscope - INFO - epoch [1][3020/4982]\tlr: 4.079e-05, memory: 14449, loss: 2.5148\n",
|
||
"2023-07-02 21:18:44,184 - modelscope - INFO - epoch [1][3025/4982]\tlr: 4.065e-05, memory: 14449, loss: 1.9086\n",
|
||
"2023-07-02 21:18:47,235 - modelscope - INFO - epoch [1][3030/4982]\tlr: 4.052e-05, memory: 14449, loss: 2.3363\n",
|
||
"2023-07-02 21:18:50,005 - modelscope - INFO - epoch [1][3035/4982]\tlr: 4.039e-05, memory: 14449, loss: 1.4543\n",
|
||
"2023-07-02 21:18:52,482 - modelscope - INFO - epoch [1][3040/4982]\tlr: 4.025e-05, memory: 14449, loss: 2.1744\n",
|
||
"2023-07-02 21:18:55,300 - modelscope - INFO - epoch [1][3045/4982]\tlr: 4.012e-05, memory: 14449, loss: 1.8871\n",
|
||
"2023-07-02 21:18:58,643 - modelscope - INFO - epoch [1][3050/4982]\tlr: 3.998e-05, memory: 14449, loss: 1.6809\n",
|
||
"2023-07-02 21:19:01,867 - modelscope - INFO - epoch [1][3055/4982]\tlr: 3.985e-05, memory: 14449, loss: 2.7977\n",
|
||
"2023-07-02 21:19:05,785 - modelscope - INFO - epoch [1][3060/4982]\tlr: 3.971e-05, memory: 14449, loss: 1.6258\n",
|
||
"2023-07-02 21:19:09,029 - modelscope - INFO - epoch [1][3065/4982]\tlr: 3.958e-05, memory: 14449, loss: 0.9796\n",
|
||
"2023-07-02 21:19:11,551 - modelscope - INFO - epoch [1][3070/4982]\tlr: 3.945e-05, memory: 14449, loss: 2.2262\n",
|
||
"2023-07-02 21:19:14,238 - modelscope - INFO - epoch [1][3075/4982]\tlr: 3.931e-05, memory: 14449, loss: 1.3527\n",
|
||
"2023-07-02 21:19:16,361 - modelscope - INFO - epoch [1][3080/4982]\tlr: 3.918e-05, memory: 14449, loss: 1.6689\n",
|
||
"2023-07-02 21:19:18,345 - modelscope - INFO - epoch [1][3085/4982]\tlr: 3.905e-05, memory: 14449, loss: 2.9641\n",
|
||
"2023-07-02 21:19:20,849 - modelscope - INFO - epoch [1][3090/4982]\tlr: 3.891e-05, memory: 14449, loss: 1.6723\n",
|
||
"2023-07-02 21:19:23,101 - modelscope - INFO - epoch [1][3095/4982]\tlr: 3.878e-05, memory: 14449, loss: 2.7703\n",
|
||
"2023-07-02 21:19:25,726 - modelscope - INFO - epoch [1][3100/4982]\tlr: 3.865e-05, memory: 14449, loss: 0.8043\n",
|
||
"2023-07-02 21:19:28,252 - modelscope - INFO - epoch [1][3105/4982]\tlr: 3.852e-05, memory: 14449, loss: 2.0820\n",
|
||
"2023-07-02 21:19:30,440 - modelscope - INFO - epoch [1][3110/4982]\tlr: 3.838e-05, memory: 14449, loss: 2.3492\n",
|
||
"2023-07-02 21:19:33,686 - modelscope - INFO - epoch [1][3115/4982]\tlr: 3.825e-05, memory: 14449, loss: 0.8090\n",
|
||
"2023-07-02 21:19:36,596 - modelscope - INFO - epoch [1][3120/4982]\tlr: 3.812e-05, memory: 14449, loss: 0.6620\n",
|
||
"2023-07-02 21:19:38,596 - modelscope - INFO - epoch [1][3125/4982]\tlr: 3.799e-05, memory: 14449, loss: 2.6781\n",
|
||
"2023-07-02 21:19:41,115 - modelscope - INFO - epoch [1][3130/4982]\tlr: 3.786e-05, memory: 14449, loss: 1.4328\n",
|
||
"2023-07-02 21:19:44,046 - modelscope - INFO - epoch [1][3135/4982]\tlr: 3.772e-05, memory: 14449, loss: 1.3764\n",
|
||
"2023-07-02 21:19:47,148 - modelscope - INFO - epoch [1][3140/4982]\tlr: 3.759e-05, memory: 14449, loss: 1.0316\n",
|
||
"2023-07-02 21:19:50,062 - modelscope - INFO - epoch [1][3145/4982]\tlr: 3.746e-05, memory: 14449, loss: 1.6078\n",
|
||
"2023-07-02 21:19:52,899 - modelscope - INFO - epoch [1][3150/4982]\tlr: 3.733e-05, memory: 14449, loss: 1.9883\n",
|
||
"2023-07-02 21:19:55,621 - modelscope - INFO - epoch [1][3155/4982]\tlr: 3.720e-05, memory: 14449, loss: 1.6697\n",
|
||
"2023-07-02 21:19:57,950 - modelscope - INFO - epoch [1][3160/4982]\tlr: 3.707e-05, memory: 14449, loss: 2.7109\n",
|
||
"2023-07-02 21:20:00,606 - modelscope - INFO - epoch [1][3165/4982]\tlr: 3.694e-05, memory: 14449, loss: 1.5930\n",
|
||
"2023-07-02 21:20:04,380 - modelscope - INFO - epoch [1][3170/4982]\tlr: 3.681e-05, memory: 14449, loss: 1.5211\n",
|
||
"2023-07-02 21:20:07,165 - modelscope - INFO - epoch [1][3175/4982]\tlr: 3.668e-05, memory: 14449, loss: 1.1980\n",
|
||
"2023-07-02 21:20:09,788 - modelscope - INFO - epoch [1][3180/4982]\tlr: 3.655e-05, memory: 14449, loss: 1.7625\n",
|
||
"2023-07-02 21:20:12,711 - modelscope - INFO - epoch [1][3185/4982]\tlr: 3.642e-05, memory: 14449, loss: 1.6734\n",
|
||
"2023-07-02 21:20:15,469 - modelscope - INFO - epoch [1][3190/4982]\tlr: 3.629e-05, memory: 14449, loss: 1.9477\n",
|
||
"2023-07-02 21:20:18,068 - modelscope - INFO - epoch [1][3195/4982]\tlr: 3.616e-05, memory: 14449, loss: 1.4062\n",
|
||
"2023-07-02 21:20:20,228 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 21:21:26,662 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
|
||
"2023-07-02 21:21:26,689 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3000_acc0.7654780745506287\n",
|
||
"2023-07-02 21:21:26,692 - modelscope - INFO - Saving checkpoint at 3200 iter\n",
|
||
"2023-07-02 21:21:26,718 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3000\n",
|
||
"2023-07-02 21:21:26,721 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7670, evaluation/loss: 1.7173, loss: 2.3687\n",
|
||
"2023-07-02 21:21:29,912 - modelscope - INFO - epoch [1][3205/4982]\tlr: 3.590e-05, memory: 14449, loss: 1.7494\n",
|
||
"2023-07-02 21:21:32,447 - modelscope - INFO - epoch [1][3210/4982]\tlr: 3.577e-05, memory: 14449, loss: 2.1035\n",
|
||
"2023-07-02 21:21:35,773 - modelscope - INFO - epoch [1][3215/4982]\tlr: 3.565e-05, memory: 14449, loss: 0.8089\n",
|
||
"2023-07-02 21:21:38,867 - modelscope - INFO - epoch [1][3220/4982]\tlr: 3.552e-05, memory: 14449, loss: 1.5078\n",
|
||
"2023-07-02 21:21:42,117 - modelscope - INFO - epoch [1][3225/4982]\tlr: 3.539e-05, memory: 14449, loss: 0.6988\n",
|
||
"2023-07-02 21:21:44,231 - modelscope - INFO - epoch [1][3230/4982]\tlr: 3.526e-05, memory: 14449, loss: 2.9305\n",
|
||
"2023-07-02 21:21:46,826 - modelscope - INFO - epoch [1][3235/4982]\tlr: 3.513e-05, memory: 14449, loss: 1.9297\n",
|
||
"2023-07-02 21:21:49,591 - modelscope - INFO - epoch [1][3240/4982]\tlr: 3.501e-05, memory: 14449, loss: 0.5963\n",
|
||
"2023-07-02 21:21:51,805 - modelscope - INFO - epoch [1][3245/4982]\tlr: 3.488e-05, memory: 14449, loss: 3.5063\n",
|
||
"2023-07-02 21:21:54,641 - modelscope - INFO - epoch [1][3250/4982]\tlr: 3.475e-05, memory: 14449, loss: 2.2263\n",
|
||
"2023-07-02 21:21:56,972 - modelscope - INFO - epoch [1][3255/4982]\tlr: 3.462e-05, memory: 14449, loss: 2.3281\n",
|
||
"2023-07-02 21:21:59,236 - modelscope - INFO - epoch [1][3260/4982]\tlr: 3.450e-05, memory: 14449, loss: 1.6074\n",
|
||
"2023-07-02 21:22:02,735 - modelscope - INFO - epoch [1][3265/4982]\tlr: 3.437e-05, memory: 14449, loss: 0.7896\n",
|
||
"2023-07-02 21:22:05,850 - modelscope - INFO - epoch [1][3270/4982]\tlr: 3.424e-05, memory: 14449, loss: 2.6018\n",
|
||
"2023-07-02 21:22:07,890 - modelscope - INFO - epoch [1][3275/4982]\tlr: 3.412e-05, memory: 14449, loss: 1.3377\n",
|
||
"2023-07-02 21:22:10,846 - modelscope - INFO - epoch [1][3280/4982]\tlr: 3.399e-05, memory: 14449, loss: 1.4023\n",
|
||
"2023-07-02 21:22:13,203 - modelscope - INFO - epoch [1][3285/4982]\tlr: 3.387e-05, memory: 14449, loss: 2.1109\n",
|
||
"2023-07-02 21:22:15,914 - modelscope - INFO - epoch [1][3290/4982]\tlr: 3.374e-05, memory: 14449, loss: 1.3941\n",
|
||
"2023-07-02 21:22:18,753 - modelscope - INFO - epoch [1][3295/4982]\tlr: 3.362e-05, memory: 14449, loss: 2.0223\n",
|
||
"2023-07-02 21:22:21,131 - modelscope - INFO - epoch [1][3300/4982]\tlr: 3.349e-05, memory: 14449, loss: 1.3546\n",
|
||
"2023-07-02 21:22:22,563 - modelscope - INFO - epoch [1][3305/4982]\tlr: 3.337e-05, memory: 14449, loss: 2.2541\n",
|
||
"2023-07-02 21:22:26,351 - modelscope - INFO - epoch [1][3310/4982]\tlr: 3.324e-05, memory: 14449, loss: 2.1484\n",
|
||
"2023-07-02 21:22:29,794 - modelscope - INFO - epoch [1][3315/4982]\tlr: 3.312e-05, memory: 14449, loss: 0.9180\n",
|
||
"2023-07-02 21:22:31,954 - modelscope - INFO - epoch [1][3320/4982]\tlr: 3.299e-05, memory: 14449, loss: 2.4869\n",
|
||
"2023-07-02 21:22:34,848 - modelscope - INFO - epoch [1][3325/4982]\tlr: 3.287e-05, memory: 14449, loss: 1.0967\n",
|
||
"2023-07-02 21:22:37,229 - modelscope - INFO - epoch [1][3330/4982]\tlr: 3.275e-05, memory: 14449, loss: 2.1406\n",
|
||
"2023-07-02 21:22:39,882 - modelscope - INFO - epoch [1][3335/4982]\tlr: 3.262e-05, memory: 14449, loss: 1.9133\n",
|
||
"2023-07-02 21:22:42,375 - modelscope - INFO - epoch [1][3340/4982]\tlr: 3.250e-05, memory: 14449, loss: 2.0443\n",
|
||
"2023-07-02 21:22:45,140 - modelscope - INFO - epoch [1][3345/4982]\tlr: 3.238e-05, memory: 14449, loss: 2.7484\n",
|
||
"2023-07-02 21:22:48,235 - modelscope - INFO - epoch [1][3350/4982]\tlr: 3.225e-05, memory: 14449, loss: 1.3258\n",
|
||
"2023-07-02 21:22:50,145 - modelscope - INFO - epoch [1][3355/4982]\tlr: 3.213e-05, memory: 14449, loss: 2.4828\n",
|
||
"2023-07-02 21:22:53,373 - modelscope - INFO - epoch [1][3360/4982]\tlr: 3.201e-05, memory: 14449, loss: 1.3379\n",
|
||
"2023-07-02 21:22:55,667 - modelscope - INFO - epoch [1][3365/4982]\tlr: 3.189e-05, memory: 14449, loss: 2.0289\n",
|
||
"2023-07-02 21:22:57,577 - modelscope - INFO - epoch [1][3370/4982]\tlr: 3.176e-05, memory: 14449, loss: 2.0500\n",
|
||
"2023-07-02 21:23:00,744 - modelscope - INFO - epoch [1][3375/4982]\tlr: 3.164e-05, memory: 14449, loss: 1.0834\n",
|
||
"2023-07-02 21:23:04,128 - modelscope - INFO - epoch [1][3380/4982]\tlr: 3.152e-05, memory: 14449, loss: 0.8875\n",
|
||
"2023-07-02 21:23:07,233 - modelscope - INFO - epoch [1][3385/4982]\tlr: 3.140e-05, memory: 14449, loss: 1.1375\n",
|
||
"2023-07-02 21:23:09,464 - modelscope - INFO - epoch [1][3390/4982]\tlr: 3.128e-05, memory: 14449, loss: 2.3506\n",
|
||
"2023-07-02 21:23:12,230 - modelscope - INFO - epoch [1][3395/4982]\tlr: 3.116e-05, memory: 14449, loss: 1.0258\n",
|
||
"2023-07-02 21:23:15,891 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 21:24:22,313 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
|
||
"2023-07-02 21:24:22,343 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3200_acc0.7669530510902405\n",
|
||
"2023-07-02 21:24:22,345 - modelscope - INFO - Saving checkpoint at 3400 iter\n",
|
||
"2023-07-02 21:24:22,373 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3200\n",
|
||
"2023-07-02 21:24:22,376 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7689, evaluation/loss: 1.6972, loss: 1.1217\n",
|
||
"2023-07-02 21:24:25,324 - modelscope - INFO - epoch [1][3405/4982]\tlr: 3.092e-05, memory: 14449, loss: 1.3055\n",
|
||
"2023-07-02 21:24:28,008 - modelscope - INFO - epoch [1][3410/4982]\tlr: 3.080e-05, memory: 14449, loss: 1.8813\n",
|
||
"2023-07-02 21:24:30,896 - modelscope - INFO - epoch [1][3415/4982]\tlr: 3.068e-05, memory: 14449, loss: 1.8965\n",
|
||
"2023-07-02 21:24:33,316 - modelscope - INFO - epoch [1][3420/4982]\tlr: 3.056e-05, memory: 14449, loss: 2.1344\n",
|
||
"2023-07-02 21:24:35,511 - modelscope - INFO - epoch [1][3425/4982]\tlr: 3.044e-05, memory: 14449, loss: 2.6798\n",
|
||
"2023-07-02 21:24:38,328 - modelscope - INFO - epoch [1][3430/4982]\tlr: 3.032e-05, memory: 14449, loss: 0.9617\n",
|
||
"2023-07-02 21:24:41,517 - modelscope - INFO - epoch [1][3435/4982]\tlr: 3.020e-05, memory: 14449, loss: 1.7773\n",
|
||
"2023-07-02 21:24:44,031 - modelscope - INFO - epoch [1][3440/4982]\tlr: 3.008e-05, memory: 14449, loss: 0.9613\n",
|
||
"2023-07-02 21:24:46,636 - modelscope - INFO - epoch [1][3445/4982]\tlr: 2.996e-05, memory: 14449, loss: 2.5844\n",
|
||
"2023-07-02 21:24:49,249 - modelscope - INFO - epoch [1][3450/4982]\tlr: 2.984e-05, memory: 14449, loss: 1.5498\n",
|
||
"2023-07-02 21:24:51,312 - modelscope - INFO - epoch [1][3455/4982]\tlr: 2.973e-05, memory: 14449, loss: 3.1250\n",
|
||
"2023-07-02 21:24:53,950 - modelscope - INFO - epoch [1][3460/4982]\tlr: 2.961e-05, memory: 14449, loss: 1.4406\n",
|
||
"2023-07-02 21:24:58,115 - modelscope - INFO - epoch [1][3465/4982]\tlr: 2.949e-05, memory: 14449, loss: 1.8449\n",
|
||
"2023-07-02 21:25:01,189 - modelscope - INFO - epoch [1][3470/4982]\tlr: 2.938e-05, memory: 14449, loss: 1.5242\n",
|
||
"2023-07-02 21:25:04,395 - modelscope - INFO - epoch [1][3475/4982]\tlr: 2.926e-05, memory: 14449, loss: 1.7469\n",
|
||
"2023-07-02 21:25:06,700 - modelscope - INFO - epoch [1][3480/4982]\tlr: 2.914e-05, memory: 14449, loss: 2.0787\n",
|
||
"2023-07-02 21:25:09,262 - modelscope - INFO - epoch [1][3485/4982]\tlr: 2.903e-05, memory: 14449, loss: 2.8416\n",
|
||
"2023-07-02 21:25:11,210 - modelscope - INFO - epoch [1][3490/4982]\tlr: 2.891e-05, memory: 14449, loss: 1.3633\n",
|
||
"2023-07-02 21:25:13,408 - modelscope - INFO - epoch [1][3495/4982]\tlr: 2.879e-05, memory: 14449, loss: 2.1203\n",
|
||
"2023-07-02 21:25:16,422 - modelscope - INFO - epoch [1][3500/4982]\tlr: 2.868e-05, memory: 14449, loss: 1.2863\n",
|
||
"2023-07-02 21:25:19,311 - modelscope - INFO - epoch [1][3505/4982]\tlr: 2.856e-05, memory: 14449, loss: 2.5109\n",
|
||
"2023-07-02 21:25:22,759 - modelscope - INFO - epoch [1][3510/4982]\tlr: 2.845e-05, memory: 14449, loss: 1.1850\n",
|
||
"2023-07-02 21:25:25,501 - modelscope - INFO - epoch [1][3515/4982]\tlr: 2.833e-05, memory: 14449, loss: 1.2992\n",
|
||
"2023-07-02 21:25:27,731 - modelscope - INFO - epoch [1][3520/4982]\tlr: 2.822e-05, memory: 14449, loss: 1.6945\n",
|
||
"2023-07-02 21:25:30,093 - modelscope - INFO - epoch [1][3525/4982]\tlr: 2.810e-05, memory: 14449, loss: 1.4635\n",
|
||
"2023-07-02 21:25:32,786 - modelscope - INFO - epoch [1][3530/4982]\tlr: 2.799e-05, memory: 14449, loss: 1.3238\n",
|
||
"2023-07-02 21:25:35,630 - modelscope - INFO - epoch [1][3535/4982]\tlr: 2.788e-05, memory: 14449, loss: 1.7512\n",
|
||
"2023-07-02 21:25:38,803 - modelscope - INFO - epoch [1][3540/4982]\tlr: 2.776e-05, memory: 14449, loss: 0.5063\n",
|
||
"2023-07-02 21:25:41,431 - modelscope - INFO - epoch [1][3545/4982]\tlr: 2.765e-05, memory: 14449, loss: 2.9984\n",
|
||
"2023-07-02 21:25:44,590 - modelscope - INFO - epoch [1][3550/4982]\tlr: 2.754e-05, memory: 14449, loss: 1.9760\n",
|
||
"2023-07-02 21:25:47,035 - modelscope - INFO - epoch [1][3555/4982]\tlr: 2.743e-05, memory: 14449, loss: 1.2375\n",
|
||
"2023-07-02 21:25:49,304 - modelscope - INFO - epoch [1][3560/4982]\tlr: 2.731e-05, memory: 14449, loss: 2.3781\n",
|
||
"2023-07-02 21:25:51,809 - modelscope - INFO - epoch [1][3565/4982]\tlr: 2.720e-05, memory: 14449, loss: 1.3707\n",
|
||
"2023-07-02 21:25:55,272 - modelscope - INFO - epoch [1][3570/4982]\tlr: 2.709e-05, memory: 14449, loss: 2.1244\n",
|
||
"2023-07-02 21:25:57,747 - modelscope - INFO - epoch [1][3575/4982]\tlr: 2.698e-05, memory: 14449, loss: 0.8705\n",
|
||
"2023-07-02 21:26:00,593 - modelscope - INFO - epoch [1][3580/4982]\tlr: 2.687e-05, memory: 14449, loss: 2.1484\n",
|
||
"2023-07-02 21:26:02,783 - modelscope - INFO - epoch [1][3585/4982]\tlr: 2.676e-05, memory: 14449, loss: 1.3639\n",
|
||
"2023-07-02 21:26:04,331 - modelscope - INFO - epoch [1][3590/4982]\tlr: 2.665e-05, memory: 14449, loss: 1.5500\n",
|
||
"2023-07-02 21:26:07,565 - modelscope - INFO - epoch [1][3595/4982]\tlr: 2.654e-05, memory: 14449, loss: 1.4891\n",
|
||
"2023-07-02 21:26:09,515 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
|
||
"2023-07-02 21:27:16,035 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
|
||
"2023-07-02 21:27:16,062 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3400_acc0.768944263458252\n",
|
||
"2023-07-02 21:27:16,065 - modelscope - INFO - Saving checkpoint at 3600 iter\n",
|
||
"2023-07-02 21:27:16,090 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3400\n",
|
||
"2023-07-02 21:27:16,092 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7704, evaluation/loss: 1.6898, loss: 2.3109\n",
|
||
"2023-07-02 21:27:17,958 - modelscope - INFO - epoch [1][3605/4982]\tlr: 2.632e-05, memory: 14449, loss: 1.5484\n",
|
||
"2023-07-02 21:27:20,844 - modelscope - INFO - epoch [1][3610/4982]\tlr: 2.621e-05, memory: 14449, loss: 1.7049\n",
|
||
"2023-07-02 21:27:24,038 - modelscope - INFO - epoch [1][3615/4982]\tlr: 2.610e-05, memory: 14449, loss: 1.1580\n",
|
||
"2023-07-02 21:27:26,611 - modelscope - INFO - epoch [1][3620/4982]\tlr: 2.599e-05, memory: 14449, loss: 1.1926\n",
|
||
"2023-07-02 21:27:29,270 - modelscope - INFO - epoch [1][3625/4982]\tlr: 2.588e-05, memory: 14449, loss: 1.9445\n",
|
||
"2023-07-02 21:27:32,570 - modelscope - INFO - epoch [1][3630/4982]\tlr: 2.577e-05, memory: 14449, loss: 0.8320\n",
|
||
"2023-07-02 21:27:34,890 - modelscope - INFO - epoch [1][3635/4982]\tlr: 2.566e-05, memory: 14449, loss: 1.8961\n",
|
||
"2023-07-02 21:27:37,762 - modelscope - INFO - epoch [1][3640/4982]\tlr: 2.556e-05, memory: 14449, loss: 1.3434\n",
|
||
"2023-07-02 21:27:40,862 - modelscope - INFO - epoch [1][3645/4982]\tlr: 2.545e-05, memory: 14449, loss: 1.6516\n",
|
||
"2023-07-02 21:27:43,323 - modelscope - INFO - epoch [1][3650/4982]\tlr: 2.534e-05, memory: 14449, loss: 3.4539\n",
|
||
"2023-07-02 21:27:46,306 - modelscope - INFO - epoch [1][3655/4982]\tlr: 2.523e-05, memory: 14449, loss: 1.5139\n",
|
||
"2023-07-02 21:27:48,976 - modelscope - INFO - epoch [1][3660/4982]\tlr: 2.513e-05, memory: 14449, loss: 1.6055\n",
|
||
"2023-07-02 21:27:52,023 - modelscope - INFO - epoch [1][3665/4982]\tlr: 2.502e-05, memory: 14449, loss: 0.5375\n",
|
||
"2023-07-02 21:27:55,459 - modelscope - INFO - epoch [1][3670/4982]\tlr: 2.492e-05, memory: 14449, loss: 1.8552\n",
|
||
"2023-07-02 21:27:58,311 - modelscope - INFO - epoch [1][3675/4982]\tlr: 2.481e-05, memory: 14449, loss: 1.0477\n",
|
||
"2023-07-02 21:28:00,477 - modelscope - INFO - epoch [1][3680/4982]\tlr: 2.470e-05, memory: 14449, loss: 1.8646\n",
|
||
"2023-07-02 21:28:02,402 - modelscope - INFO - epoch [1][3685/4982]\tlr: 2.460e-05, memory: 14449, loss: 2.7117\n",
|
||
"2023-07-02 21:28:05,217 - modelscope - INFO - epoch [1][3690/4982]\tlr: 2.449e-05, memory: 14449, loss: 2.6594\n",
|
||
"2023-07-02 21:28:07,697 - modelscope - INFO - epoch [1][3695/4982]\tlr: 2.439e-05, memory: 14449, loss: 1.9680\n",
|
||
"2023-07-02 21:28:11,289 - modelscope - INFO - epoch [1][3700/4982]\tlr: 2.429e-05, memory: 14449, loss: 1.4680\n",
|
||
"2023-07-02 21:28:14,322 - modelscope - INFO - epoch [1][3705/4982]\tlr: 2.418e-05, memory: 14449, loss: 2.1742\n",
|
||
"2023-07-02 21:28:16,434 - modelscope - INFO - epoch [1][3710/4982]\tlr: 2.408e-05, memory: 14449, loss: 2.0691\n",
|
||
"2023-07-02 21:28:19,150 - modelscope - INFO - epoch [1][3715/4982]\tlr: 2.398e-05, memory: 14449, loss: 1.6078\n",
|
||
"2023-07-02 21:28:22,166 - modelscope - INFO - epoch [1][3720/4982]\tlr: 2.387e-05, memory: 14449, loss: 0.9880\n",
|
||
"2023-07-02 21:28:24,924 - modelscope - INFO - epoch [1][3725/4982]\tlr: 2.377e-05, memory: 14449, loss: 1.1384\n",
|
||
"2023-07-02 21:28:28,212 - modelscope - INFO - epoch [1][3730/4982]\tlr: 2.367e-05, memory: 14449, loss: 1.3064\n",
|
||
"2023-07-02 21:28:30,391 - modelscope - INFO - epoch [1][3735/4982]\tlr: 2.357e-05, memory: 14449, loss: 2.5031\n",
|
||
"2023-07-02 21:28:32,316 - modelscope - INFO - epoch [1][3740/4982]\tlr: 2.346e-05, memory: 14449, loss: 1.1914\n",
|
||
"2023-07-02 21:28:35,087 - modelscope - INFO - epoch [1][3745/4982]\tlr: 2.336e-05, memory: 14449, loss: 1.5630\n",
|
||
"2023-07-02 21:28:38,274 - modelscope - INFO - epoch [1][3750/4982]\tlr: 2.326e-05, memory: 14449, loss: 1.5844\n",
|
||
"2023-07-02 21:28:40,649 - modelscope - INFO - epoch [1][3755/4982]\tlr: 2.316e-05, memory: 14449, loss: 2.6648\n",
|
||
"2023-07-02 21:28:43,226 - modelscope - INFO - epoch [1][3760/4982]\tlr: 2.306e-05, memory: 14449, loss: 1.3648\n",
|
||
"2023-07-02 21:28:45,433 - modelscope - INFO - epoch [1][3765/4982]\tlr: 2.296e-05, memory: 14449, loss: 2.8930\n",
|
||
"2023-07-02 21:28:48,571 - modelscope - INFO - epoch [1][3770/4982]\tlr: 2.286e-05, memory: 14449, loss: 1.8161\n",
|
||
"2023-07-02 21:28:51,247 - modelscope - INFO - epoch [1][3775/4982]\tlr: 2.276e-05, memory: 14449, loss: 2.2783\n",
|
||
"2023-07-02 21:28:53,364 - modelscope - INFO - epoch [1][3780/4982]\tlr: 2.266e-05, memory: 14449, loss: 2.4652\n",
|
||
"2023-07-02 21:28:56,459 - modelscope - INFO - epoch [1][3785/4982]\tlr: 2.256e-05, memory: 14449, loss: 0.5556\n",
|
||
"2023-07-02 21:28:58,529 - modelscope - INFO - epoch [1][3790/4982]\tlr: 2.247e-05, memory: 14449, loss: 1.4350\n",
|
||
"2023-07-02 21:29:01,457 - modelscope - INFO - epoch [1][3795/4982]\tlr: 2.237e-05, memory: 14449, loss: 2.3062\n",
|
||
"2023-07-02 21:29:03,885 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
|
||
"2023-07-02 21:30:10,496 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
|
||
"2023-07-02 21:30:10,522 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3600_acc0.7704192399978638\n",
|
||
"2023-07-02 21:30:10,525 - modelscope - INFO - Saving checkpoint at 3800 iter\n",
|
||
"2023-07-02 21:30:10,549 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3600\n",
|
||
"2023-07-02 21:30:10,552 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7714, evaluation/loss: 1.6864, loss: 1.6359\n",
|
||
"2023-07-02 21:30:12,897 - modelscope - INFO - epoch [1][3805/4982]\tlr: 2.217e-05, memory: 14449, loss: 2.1727\n",
|
||
"2023-07-02 21:30:15,703 - modelscope - INFO - epoch [1][3810/4982]\tlr: 2.208e-05, memory: 14449, loss: 1.7061\n",
|
||
"2023-07-02 21:30:18,582 - modelscope - INFO - epoch [1][3815/4982]\tlr: 2.198e-05, memory: 14449, loss: 0.9371\n",
|
||
"2023-07-02 21:30:21,148 - modelscope - INFO - epoch [1][3820/4982]\tlr: 2.188e-05, memory: 14449, loss: 1.7875\n",
|
||
"2023-07-02 21:30:23,806 - modelscope - INFO - epoch [1][3825/4982]\tlr: 2.179e-05, memory: 14449, loss: 2.2953\n",
|
||
"2023-07-02 21:30:26,426 - modelscope - INFO - epoch [1][3830/4982]\tlr: 2.169e-05, memory: 14449, loss: 2.3281\n",
|
||
"2023-07-02 21:30:28,893 - modelscope - INFO - epoch [1][3835/4982]\tlr: 2.160e-05, memory: 14449, loss: 1.5443\n",
|
||
"2023-07-02 21:30:31,735 - modelscope - INFO - epoch [1][3840/4982]\tlr: 2.150e-05, memory: 14449, loss: 2.0406\n",
|
||
"2023-07-02 21:30:33,879 - modelscope - INFO - epoch [1][3845/4982]\tlr: 2.141e-05, memory: 14449, loss: 2.1980\n",
|
||
"2023-07-02 21:30:36,598 - modelscope - INFO - epoch [1][3850/4982]\tlr: 2.131e-05, memory: 14449, loss: 1.5972\n",
|
||
"2023-07-02 21:30:39,142 - modelscope - INFO - epoch [1][3855/4982]\tlr: 2.122e-05, memory: 14449, loss: 2.2004\n",
|
||
"2023-07-02 21:30:41,541 - modelscope - INFO - epoch [1][3860/4982]\tlr: 2.112e-05, memory: 14449, loss: 1.5225\n",
|
||
"2023-07-02 21:30:44,206 - modelscope - INFO - epoch [1][3865/4982]\tlr: 2.103e-05, memory: 14449, loss: 2.0740\n",
|
||
"2023-07-02 21:30:47,318 - modelscope - INFO - epoch [1][3870/4982]\tlr: 2.094e-05, memory: 14449, loss: 2.7250\n",
|
||
"2023-07-02 21:30:50,059 - modelscope - INFO - epoch [1][3875/4982]\tlr: 2.084e-05, memory: 14449, loss: 2.2059\n",
|
||
"2023-07-02 21:30:52,045 - modelscope - INFO - epoch [1][3880/4982]\tlr: 2.075e-05, memory: 14449, loss: 1.7930\n",
|
||
"2023-07-02 21:30:54,716 - modelscope - INFO - epoch [1][3885/4982]\tlr: 2.066e-05, memory: 14449, loss: 1.6184\n",
|
||
"2023-07-02 21:30:56,979 - modelscope - INFO - epoch [1][3890/4982]\tlr: 2.057e-05, memory: 14449, loss: 2.1453\n",
|
||
"2023-07-02 21:31:01,437 - modelscope - INFO - epoch [1][3895/4982]\tlr: 2.048e-05, memory: 14449, loss: 1.2229\n",
|
||
"2023-07-02 21:31:05,207 - modelscope - INFO - epoch [1][3900/4982]\tlr: 2.039e-05, memory: 14449, loss: 1.7156\n",
|
||
"2023-07-02 21:31:07,873 - modelscope - INFO - epoch [1][3905/4982]\tlr: 2.029e-05, memory: 14449, loss: 1.8084\n",
|
||
"2023-07-02 21:31:10,896 - modelscope - INFO - epoch [1][3910/4982]\tlr: 2.020e-05, memory: 14449, loss: 0.4583\n",
|
||
"2023-07-02 21:31:13,623 - modelscope - INFO - epoch [1][3915/4982]\tlr: 2.011e-05, memory: 14449, loss: 3.1516\n",
|
||
"2023-07-02 21:31:16,647 - modelscope - INFO - epoch [1][3920/4982]\tlr: 2.002e-05, memory: 14449, loss: 1.0519\n",
|
||
"2023-07-02 21:31:19,431 - modelscope - INFO - epoch [1][3925/4982]\tlr: 1.994e-05, memory: 14449, loss: 2.3402\n",
|
||
"2023-07-02 21:31:21,995 - modelscope - INFO - epoch [1][3930/4982]\tlr: 1.985e-05, memory: 14449, loss: 2.3391\n",
|
||
"2023-07-02 21:31:24,439 - modelscope - INFO - epoch [1][3935/4982]\tlr: 1.976e-05, memory: 14449, loss: 2.4483\n",
|
||
"2023-07-02 21:31:26,586 - modelscope - INFO - epoch [1][3940/4982]\tlr: 1.967e-05, memory: 14449, loss: 2.2727\n",
|
||
"2023-07-02 21:31:28,897 - modelscope - INFO - epoch [1][3945/4982]\tlr: 1.958e-05, memory: 14449, loss: 3.0383\n",
|
||
"2023-07-02 21:31:31,754 - modelscope - INFO - epoch [1][3950/4982]\tlr: 1.949e-05, memory: 14449, loss: 1.5698\n",
|
||
"2023-07-02 21:31:35,256 - modelscope - INFO - epoch [1][3955/4982]\tlr: 1.941e-05, memory: 14449, loss: 1.2930\n",
|
||
"2023-07-02 21:31:37,474 - modelscope - INFO - epoch [1][3960/4982]\tlr: 1.932e-05, memory: 14449, loss: 1.4481\n",
|
||
"2023-07-02 21:31:40,154 - modelscope - INFO - epoch [1][3965/4982]\tlr: 1.923e-05, memory: 14449, loss: 1.6508\n",
|
||
"2023-07-02 21:31:42,215 - modelscope - INFO - epoch [1][3970/4982]\tlr: 1.915e-05, memory: 14449, loss: 1.6758\n",
|
||
"2023-07-02 21:31:44,996 - modelscope - INFO - epoch [1][3975/4982]\tlr: 1.906e-05, memory: 14449, loss: 3.0355\n",
|
||
"2023-07-02 21:31:47,982 - modelscope - INFO - epoch [1][3980/4982]\tlr: 1.898e-05, memory: 14449, loss: 2.0975\n",
|
||
"2023-07-02 21:31:50,425 - modelscope - INFO - epoch [1][3985/4982]\tlr: 1.889e-05, memory: 14449, loss: 2.7559\n",
|
||
"2023-07-02 21:31:53,599 - modelscope - INFO - epoch [1][3990/4982]\tlr: 1.881e-05, memory: 14449, loss: 0.6062\n",
|
||
"2023-07-02 21:31:56,806 - modelscope - INFO - epoch [1][3995/4982]\tlr: 1.872e-05, memory: 14449, loss: 1.8811\n",
|
||
"2023-07-02 21:31:59,002 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
|
||
"2023-07-02 21:33:05,226 - modelscope - INFO - Saving checkpoint at 4000 iter\n",
|
||
"2023-07-02 21:33:05,253 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter3800_acc0.7713964581489563\n",
|
||
"2023-07-02 21:33:05,255 - modelscope - INFO - Saving checkpoint at 4000 iter\n",
|
||
"2023-07-02 21:33:05,280 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_3800\n",
|
||
"2023-07-02 21:33:05,283 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7721, evaluation/loss: 1.6809, loss: 2.3164\n",
|
||
"2023-07-02 21:33:07,641 - modelscope - INFO - epoch [1][4005/4982]\tlr: 1.855e-05, memory: 14449, loss: 1.3918\n",
|
||
"2023-07-02 21:33:10,090 - modelscope - INFO - epoch [1][4010/4982]\tlr: 1.847e-05, memory: 14449, loss: 1.7758\n",
|
||
"2023-07-02 21:33:13,438 - modelscope - INFO - epoch [1][4015/4982]\tlr: 1.839e-05, memory: 14449, loss: 0.8627\n",
|
||
"2023-07-02 21:33:16,653 - modelscope - INFO - epoch [1][4020/4982]\tlr: 1.831e-05, memory: 14449, loss: 1.2715\n",
|
||
"2023-07-02 21:33:20,248 - modelscope - INFO - epoch [1][4025/4982]\tlr: 1.822e-05, memory: 14449, loss: 2.1164\n",
|
||
"2023-07-02 21:33:23,029 - modelscope - INFO - epoch [1][4030/4982]\tlr: 1.814e-05, memory: 14449, loss: 1.0982\n",
|
||
"2023-07-02 21:33:25,384 - modelscope - INFO - epoch [1][4035/4982]\tlr: 1.806e-05, memory: 14449, loss: 1.3770\n",
|
||
"2023-07-02 21:33:27,542 - modelscope - INFO - epoch [1][4040/4982]\tlr: 1.798e-05, memory: 14449, loss: 1.4436\n",
|
||
"2023-07-02 21:33:29,897 - modelscope - INFO - epoch [1][4045/4982]\tlr: 1.790e-05, memory: 14449, loss: 1.6316\n",
|
||
"2023-07-02 21:33:32,478 - modelscope - INFO - epoch [1][4050/4982]\tlr: 1.782e-05, memory: 14449, loss: 0.8738\n",
|
||
"2023-07-02 21:33:35,228 - modelscope - INFO - epoch [1][4055/4982]\tlr: 1.774e-05, memory: 14449, loss: 1.9016\n",
|
||
"2023-07-02 21:33:37,569 - modelscope - INFO - epoch [1][4060/4982]\tlr: 1.766e-05, memory: 14449, loss: 1.6512\n",
|
||
"2023-07-02 21:33:40,234 - modelscope - INFO - epoch [1][4065/4982]\tlr: 1.758e-05, memory: 14449, loss: 1.3039\n",
|
||
"2023-07-02 21:33:42,749 - modelscope - INFO - epoch [1][4070/4982]\tlr: 1.750e-05, memory: 14449, loss: 1.2514\n",
|
||
"2023-07-02 21:33:45,340 - modelscope - INFO - epoch [1][4075/4982]\tlr: 1.742e-05, memory: 14449, loss: 2.8492\n",
|
||
"2023-07-02 21:33:47,472 - modelscope - INFO - epoch [1][4080/4982]\tlr: 1.734e-05, memory: 14449, loss: 2.0809\n",
|
||
"2023-07-02 21:33:50,149 - modelscope - INFO - epoch [1][4085/4982]\tlr: 1.727e-05, memory: 14449, loss: 1.1375\n",
|
||
"2023-07-02 21:33:53,306 - modelscope - INFO - epoch [1][4090/4982]\tlr: 1.719e-05, memory: 14449, loss: 0.4272\n",
|
||
"2023-07-02 21:33:55,772 - modelscope - INFO - epoch [1][4095/4982]\tlr: 1.711e-05, memory: 14449, loss: 3.0484\n",
|
||
"2023-07-02 21:33:58,344 - modelscope - INFO - epoch [1][4100/4982]\tlr: 1.704e-05, memory: 14449, loss: 1.9910\n",
|
||
"2023-07-02 21:34:00,903 - modelscope - INFO - epoch [1][4105/4982]\tlr: 1.696e-05, memory: 14449, loss: 1.7889\n",
|
||
"2023-07-02 21:34:03,059 - modelscope - INFO - epoch [1][4110/4982]\tlr: 1.688e-05, memory: 14449, loss: 1.2016\n",
|
||
"2023-07-02 21:34:05,621 - modelscope - INFO - epoch [1][4115/4982]\tlr: 1.681e-05, memory: 14449, loss: 1.8453\n",
|
||
"2023-07-02 21:34:09,027 - modelscope - INFO - epoch [1][4120/4982]\tlr: 1.673e-05, memory: 14449, loss: 1.5453\n",
|
||
"2023-07-02 21:34:11,741 - modelscope - INFO - epoch [1][4125/4982]\tlr: 1.666e-05, memory: 14449, loss: 1.9316\n",
|
||
"2023-07-02 21:34:13,865 - modelscope - INFO - epoch [1][4130/4982]\tlr: 1.659e-05, memory: 14449, loss: 2.3094\n",
|
||
"2023-07-02 21:34:16,258 - modelscope - INFO - epoch [1][4135/4982]\tlr: 1.651e-05, memory: 14449, loss: 2.5703\n",
|
||
"2023-07-02 21:34:20,487 - modelscope - INFO - epoch [1][4140/4982]\tlr: 1.644e-05, memory: 14449, loss: 1.3984\n",
|
||
"2023-07-02 21:34:23,365 - modelscope - INFO - epoch [1][4145/4982]\tlr: 1.636e-05, memory: 14449, loss: 1.5207\n",
|
||
"2023-07-02 21:34:26,448 - modelscope - INFO - epoch [1][4150/4982]\tlr: 1.629e-05, memory: 14449, loss: 1.3838\n",
|
||
"2023-07-02 21:34:28,356 - modelscope - INFO - epoch [1][4155/4982]\tlr: 1.622e-05, memory: 14449, loss: 1.5562\n",
|
||
"2023-07-02 21:34:30,276 - modelscope - INFO - epoch [1][4160/4982]\tlr: 1.615e-05, memory: 14449, loss: 2.0258\n",
|
||
"2023-07-02 21:34:33,019 - modelscope - INFO - epoch [1][4165/4982]\tlr: 1.608e-05, memory: 14449, loss: 1.0586\n",
|
||
"2023-07-02 21:34:35,587 - modelscope - INFO - epoch [1][4170/4982]\tlr: 1.601e-05, memory: 14449, loss: 2.0258\n",
|
||
"2023-07-02 21:34:38,118 - modelscope - INFO - epoch [1][4175/4982]\tlr: 1.593e-05, memory: 14449, loss: 1.7780\n",
|
||
"2023-07-02 21:34:40,812 - modelscope - INFO - epoch [1][4180/4982]\tlr: 1.586e-05, memory: 14449, loss: 1.4871\n",
|
||
"2023-07-02 21:34:43,689 - modelscope - INFO - epoch [1][4185/4982]\tlr: 1.579e-05, memory: 14449, loss: 2.4375\n",
|
||
"2023-07-02 21:34:45,571 - modelscope - INFO - epoch [1][4190/4982]\tlr: 1.572e-05, memory: 14449, loss: 2.8734\n",
|
||
"2023-07-02 21:34:47,974 - modelscope - INFO - epoch [1][4195/4982]\tlr: 1.566e-05, memory: 14449, loss: 1.9576\n",
|
||
"2023-07-02 21:34:50,431 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.24it/s]\n",
|
||
"2023-07-02 21:35:56,740 - modelscope - INFO - Saving checkpoint at 4200 iter\n",
|
||
"2023-07-02 21:35:56,767 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4000\n",
|
||
"2023-07-02 21:35:56,770 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7719, evaluation/loss: 1.6805, loss: 3.5922\n",
|
||
"2023-07-02 21:35:58,922 - modelscope - INFO - epoch [1][4205/4982]\tlr: 1.552e-05, memory: 14449, loss: 2.2658\n",
|
||
"2023-07-02 21:36:01,295 - modelscope - INFO - epoch [1][4210/4982]\tlr: 1.545e-05, memory: 14449, loss: 1.6580\n",
|
||
"2023-07-02 21:36:04,097 - modelscope - INFO - epoch [1][4215/4982]\tlr: 1.538e-05, memory: 14449, loss: 1.6982\n",
|
||
"2023-07-02 21:36:06,731 - modelscope - INFO - epoch [1][4220/4982]\tlr: 1.532e-05, memory: 14449, loss: 1.9359\n",
|
||
"2023-07-02 21:36:08,551 - modelscope - INFO - epoch [1][4225/4982]\tlr: 1.525e-05, memory: 14449, loss: 2.5812\n",
|
||
"2023-07-02 21:36:11,911 - modelscope - INFO - epoch [1][4230/4982]\tlr: 1.518e-05, memory: 14449, loss: 1.9195\n",
|
||
"2023-07-02 21:36:14,506 - modelscope - INFO - epoch [1][4235/4982]\tlr: 1.512e-05, memory: 14449, loss: 1.2545\n",
|
||
"2023-07-02 21:36:17,733 - modelscope - INFO - epoch [1][4240/4982]\tlr: 1.505e-05, memory: 14449, loss: 1.9451\n",
|
||
"2023-07-02 21:36:20,470 - modelscope - INFO - epoch [1][4245/4982]\tlr: 1.499e-05, memory: 14449, loss: 1.4648\n",
|
||
"2023-07-02 21:36:22,770 - modelscope - INFO - epoch [1][4250/4982]\tlr: 1.492e-05, memory: 14449, loss: 1.6961\n",
|
||
"2023-07-02 21:36:25,378 - modelscope - INFO - epoch [1][4255/4982]\tlr: 1.486e-05, memory: 14449, loss: 2.4164\n",
|
||
"2023-07-02 21:36:27,752 - modelscope - INFO - epoch [1][4260/4982]\tlr: 1.479e-05, memory: 14449, loss: 1.9963\n",
|
||
"2023-07-02 21:36:30,118 - modelscope - INFO - epoch [1][4265/4982]\tlr: 1.473e-05, memory: 14449, loss: 2.1148\n",
|
||
"2023-07-02 21:36:33,660 - modelscope - INFO - epoch [1][4270/4982]\tlr: 1.466e-05, memory: 14449, loss: 1.0082\n",
|
||
"2023-07-02 21:36:37,177 - modelscope - INFO - epoch [1][4275/4982]\tlr: 1.460e-05, memory: 14449, loss: 1.0070\n",
|
||
"2023-07-02 21:36:39,794 - modelscope - INFO - epoch [1][4280/4982]\tlr: 1.454e-05, memory: 14449, loss: 2.2496\n",
|
||
"2023-07-02 21:36:42,033 - modelscope - INFO - epoch [1][4285/4982]\tlr: 1.448e-05, memory: 14449, loss: 2.6797\n",
|
||
"2023-07-02 21:36:45,045 - modelscope - INFO - epoch [1][4290/4982]\tlr: 1.442e-05, memory: 14449, loss: 1.7584\n",
|
||
"2023-07-02 21:36:47,854 - modelscope - INFO - epoch [1][4295/4982]\tlr: 1.435e-05, memory: 14449, loss: 0.8922\n",
|
||
"2023-07-02 21:36:50,056 - modelscope - INFO - epoch [1][4300/4982]\tlr: 1.429e-05, memory: 14449, loss: 0.9248\n",
|
||
"2023-07-02 21:36:52,432 - modelscope - INFO - epoch [1][4305/4982]\tlr: 1.423e-05, memory: 14449, loss: 2.2406\n",
|
||
"2023-07-02 21:36:55,320 - modelscope - INFO - epoch [1][4310/4982]\tlr: 1.417e-05, memory: 14449, loss: 2.6234\n",
|
||
"2023-07-02 21:36:57,625 - modelscope - INFO - epoch [1][4315/4982]\tlr: 1.411e-05, memory: 14449, loss: 2.5016\n",
|
||
"2023-07-02 21:36:59,666 - modelscope - INFO - epoch [1][4320/4982]\tlr: 1.405e-05, memory: 14449, loss: 2.4305\n",
|
||
"2023-07-02 21:37:01,862 - modelscope - INFO - epoch [1][4325/4982]\tlr: 1.400e-05, memory: 14449, loss: 2.3391\n",
|
||
"2023-07-02 21:37:03,730 - modelscope - INFO - epoch [1][4330/4982]\tlr: 1.394e-05, memory: 14449, loss: 2.1297\n",
|
||
"2023-07-02 21:37:06,491 - modelscope - INFO - epoch [1][4335/4982]\tlr: 1.388e-05, memory: 14449, loss: 1.5926\n",
|
||
"2023-07-02 21:37:08,327 - modelscope - INFO - epoch [1][4340/4982]\tlr: 1.382e-05, memory: 14449, loss: 2.0867\n",
|
||
"2023-07-02 21:37:10,978 - modelscope - INFO - epoch [1][4345/4982]\tlr: 1.376e-05, memory: 14449, loss: 1.5793\n",
|
||
"2023-07-02 21:37:13,418 - modelscope - INFO - epoch [1][4350/4982]\tlr: 1.371e-05, memory: 14449, loss: 1.3965\n",
|
||
"2023-07-02 21:37:16,097 - modelscope - INFO - epoch [1][4355/4982]\tlr: 1.365e-05, memory: 14449, loss: 1.6531\n",
|
||
"2023-07-02 21:37:18,922 - modelscope - INFO - epoch [1][4360/4982]\tlr: 1.360e-05, memory: 14449, loss: 1.2753\n",
|
||
"2023-07-02 21:37:21,708 - modelscope - INFO - epoch [1][4365/4982]\tlr: 1.354e-05, memory: 14449, loss: 1.6145\n",
|
||
"2023-07-02 21:37:23,716 - modelscope - INFO - epoch [1][4370/4982]\tlr: 1.349e-05, memory: 14449, loss: 2.6463\n",
|
||
"2023-07-02 21:37:27,213 - modelscope - INFO - epoch [1][4375/4982]\tlr: 1.343e-05, memory: 14449, loss: 0.6934\n",
|
||
"2023-07-02 21:37:30,031 - modelscope - INFO - epoch [1][4380/4982]\tlr: 1.338e-05, memory: 14449, loss: 2.2023\n",
|
||
"2023-07-02 21:37:33,441 - modelscope - INFO - epoch [1][4385/4982]\tlr: 1.332e-05, memory: 14449, loss: 1.6848\n",
|
||
"2023-07-02 21:37:35,797 - modelscope - INFO - epoch [1][4390/4982]\tlr: 1.327e-05, memory: 14449, loss: 1.6936\n",
|
||
"2023-07-02 21:37:39,329 - modelscope - INFO - epoch [1][4395/4982]\tlr: 1.322e-05, memory: 14449, loss: 0.5190\n",
|
||
"2023-07-02 21:37:41,815 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 21:38:48,264 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
|
||
"2023-07-02 21:38:48,291 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter4000_acc0.7720601558685303\n",
|
||
"2023-07-02 21:38:48,293 - modelscope - INFO - Saving checkpoint at 4400 iter\n",
|
||
"2023-07-02 21:38:48,319 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4200\n",
|
||
"2023-07-02 21:38:48,321 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7722, evaluation/loss: 1.6760, loss: 2.0141\n",
|
||
"2023-07-02 21:38:52,426 - modelscope - INFO - epoch [1][4405/4982]\tlr: 1.311e-05, memory: 14449, loss: 1.0922\n",
|
||
"2023-07-02 21:38:54,940 - modelscope - INFO - epoch [1][4410/4982]\tlr: 1.306e-05, memory: 14449, loss: 1.1858\n",
|
||
"2023-07-02 21:38:57,631 - modelscope - INFO - epoch [1][4415/4982]\tlr: 1.301e-05, memory: 14449, loss: 2.2687\n",
|
||
"2023-07-02 21:39:01,287 - modelscope - INFO - epoch [1][4420/4982]\tlr: 1.296e-05, memory: 14449, loss: 1.2707\n",
|
||
"2023-07-02 21:39:04,825 - modelscope - INFO - epoch [1][4425/4982]\tlr: 1.291e-05, memory: 14449, loss: 2.9891\n",
|
||
"2023-07-02 21:39:07,641 - modelscope - INFO - epoch [1][4430/4982]\tlr: 1.286e-05, memory: 14449, loss: 1.6935\n",
|
||
"2023-07-02 21:39:10,432 - modelscope - INFO - epoch [1][4435/4982]\tlr: 1.281e-05, memory: 14449, loss: 1.4844\n",
|
||
"2023-07-02 21:39:13,413 - modelscope - INFO - epoch [1][4440/4982]\tlr: 1.276e-05, memory: 14449, loss: 1.8453\n",
|
||
"2023-07-02 21:39:17,035 - modelscope - INFO - epoch [1][4445/4982]\tlr: 1.271e-05, memory: 14449, loss: 1.4854\n",
|
||
"2023-07-02 21:39:20,194 - modelscope - INFO - epoch [1][4450/4982]\tlr: 1.266e-05, memory: 14449, loss: 1.2645\n",
|
||
"2023-07-02 21:39:23,060 - modelscope - INFO - epoch [1][4455/4982]\tlr: 1.261e-05, memory: 14449, loss: 1.7969\n",
|
||
"2023-07-02 21:39:25,473 - modelscope - INFO - epoch [1][4460/4982]\tlr: 1.257e-05, memory: 14449, loss: 2.3201\n",
|
||
"2023-07-02 21:39:28,124 - modelscope - INFO - epoch [1][4465/4982]\tlr: 1.252e-05, memory: 14449, loss: 1.7680\n",
|
||
"2023-07-02 21:39:30,849 - modelscope - INFO - epoch [1][4470/4982]\tlr: 1.247e-05, memory: 14449, loss: 1.6301\n",
|
||
"2023-07-02 21:39:33,762 - modelscope - INFO - epoch [1][4475/4982]\tlr: 1.243e-05, memory: 14449, loss: 2.1186\n",
|
||
"2023-07-02 21:39:36,085 - modelscope - INFO - epoch [1][4480/4982]\tlr: 1.238e-05, memory: 14449, loss: 1.4234\n",
|
||
"2023-07-02 21:39:38,762 - modelscope - INFO - epoch [1][4485/4982]\tlr: 1.233e-05, memory: 14449, loss: 1.7797\n",
|
||
"2023-07-02 21:39:41,748 - modelscope - INFO - epoch [1][4490/4982]\tlr: 1.229e-05, memory: 14449, loss: 1.6820\n",
|
||
"2023-07-02 21:39:44,541 - modelscope - INFO - epoch [1][4495/4982]\tlr: 1.224e-05, memory: 14449, loss: 1.0109\n",
|
||
"2023-07-02 21:39:47,053 - modelscope - INFO - epoch [1][4500/4982]\tlr: 1.220e-05, memory: 14449, loss: 2.4484\n",
|
||
"2023-07-02 21:39:49,590 - modelscope - INFO - epoch [1][4505/4982]\tlr: 1.216e-05, memory: 14449, loss: 1.8258\n",
|
||
"2023-07-02 21:39:52,526 - modelscope - INFO - epoch [1][4510/4982]\tlr: 1.211e-05, memory: 14449, loss: 2.8773\n",
|
||
"2023-07-02 21:39:55,867 - modelscope - INFO - epoch [1][4515/4982]\tlr: 1.207e-05, memory: 14449, loss: 1.6246\n",
|
||
"2023-07-02 21:39:58,627 - modelscope - INFO - epoch [1][4520/4982]\tlr: 1.203e-05, memory: 14449, loss: 2.5562\n",
|
||
"2023-07-02 21:40:01,603 - modelscope - INFO - epoch [1][4525/4982]\tlr: 1.199e-05, memory: 14449, loss: 1.4436\n",
|
||
"2023-07-02 21:40:04,193 - modelscope - INFO - epoch [1][4530/4982]\tlr: 1.194e-05, memory: 14449, loss: 1.3711\n",
|
||
"2023-07-02 21:40:07,773 - modelscope - INFO - epoch [1][4535/4982]\tlr: 1.190e-05, memory: 14449, loss: 1.8023\n",
|
||
"2023-07-02 21:40:10,054 - modelscope - INFO - epoch [1][4540/4982]\tlr: 1.186e-05, memory: 14449, loss: 2.0508\n",
|
||
"2023-07-02 21:40:12,973 - modelscope - INFO - epoch [1][4545/4982]\tlr: 1.182e-05, memory: 14449, loss: 2.5195\n",
|
||
"2023-07-02 21:40:16,038 - modelscope - INFO - epoch [1][4550/4982]\tlr: 1.178e-05, memory: 14449, loss: 1.7164\n",
|
||
"2023-07-02 21:40:18,581 - modelscope - INFO - epoch [1][4555/4982]\tlr: 1.174e-05, memory: 14449, loss: 1.5645\n",
|
||
"2023-07-02 21:40:20,963 - modelscope - INFO - epoch [1][4560/4982]\tlr: 1.170e-05, memory: 14449, loss: 2.0105\n",
|
||
"2023-07-02 21:40:23,706 - modelscope - INFO - epoch [1][4565/4982]\tlr: 1.167e-05, memory: 14449, loss: 1.3252\n",
|
||
"2023-07-02 21:40:25,962 - modelscope - INFO - epoch [1][4570/4982]\tlr: 1.163e-05, memory: 14449, loss: 1.8855\n",
|
||
"2023-07-02 21:40:29,182 - modelscope - INFO - epoch [1][4575/4982]\tlr: 1.159e-05, memory: 14449, loss: 1.2594\n",
|
||
"2023-07-02 21:40:31,408 - modelscope - INFO - epoch [1][4580/4982]\tlr: 1.155e-05, memory: 14449, loss: 2.0570\n",
|
||
"2023-07-02 21:40:34,024 - modelscope - INFO - epoch [1][4585/4982]\tlr: 1.152e-05, memory: 14449, loss: 2.6170\n",
|
||
"2023-07-02 21:40:36,599 - modelscope - INFO - epoch [1][4590/4982]\tlr: 1.148e-05, memory: 14449, loss: 1.6721\n",
|
||
"2023-07-02 21:40:39,014 - modelscope - INFO - epoch [1][4595/4982]\tlr: 1.144e-05, memory: 14449, loss: 1.1687\n",
|
||
"2023-07-02 21:40:41,965 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.22it/s]\n",
|
||
"2023-07-02 21:41:48,497 - modelscope - INFO - Saving checkpoint at 4600 iter\n",
|
||
"2023-07-02 21:41:48,524 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter4400_acc0.7721523642539978\n",
|
||
"2023-07-02 21:41:48,526 - modelscope - INFO - Saving checkpoint at 4600 iter\n",
|
||
"2023-07-02 21:41:48,552 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4400\n",
|
||
"2023-07-02 21:41:48,555 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7725, evaluation/loss: 1.6727, loss: 1.6291\n",
|
||
"2023-07-02 21:41:51,846 - modelscope - INFO - epoch [1][4605/4982]\tlr: 1.137e-05, memory: 14449, loss: 0.3742\n",
|
||
"2023-07-02 21:41:54,432 - modelscope - INFO - epoch [1][4610/4982]\tlr: 1.134e-05, memory: 14449, loss: 1.9832\n",
|
||
"2023-07-02 21:41:56,756 - modelscope - INFO - epoch [1][4615/4982]\tlr: 1.130e-05, memory: 14449, loss: 1.6234\n",
|
||
"2023-07-02 21:41:59,635 - modelscope - INFO - epoch [1][4620/4982]\tlr: 1.127e-05, memory: 14449, loss: 1.2416\n",
|
||
"2023-07-02 21:42:02,440 - modelscope - INFO - epoch [1][4625/4982]\tlr: 1.124e-05, memory: 14449, loss: 1.9668\n",
|
||
"2023-07-02 21:42:04,595 - modelscope - INFO - epoch [1][4630/4982]\tlr: 1.120e-05, memory: 14449, loss: 1.1527\n",
|
||
"2023-07-02 21:42:07,367 - modelscope - INFO - epoch [1][4635/4982]\tlr: 1.117e-05, memory: 14449, loss: 2.0367\n",
|
||
"2023-07-02 21:42:09,781 - modelscope - INFO - epoch [1][4640/4982]\tlr: 1.114e-05, memory: 14449, loss: 1.6268\n",
|
||
"2023-07-02 21:42:12,158 - modelscope - INFO - epoch [1][4645/4982]\tlr: 1.111e-05, memory: 14449, loss: 2.4633\n",
|
||
"2023-07-02 21:42:14,206 - modelscope - INFO - epoch [1][4650/4982]\tlr: 1.108e-05, memory: 14449, loss: 2.8531\n",
|
||
"2023-07-02 21:42:16,879 - modelscope - INFO - epoch [1][4655/4982]\tlr: 1.105e-05, memory: 14449, loss: 2.2703\n",
|
||
"2023-07-02 21:42:20,006 - modelscope - INFO - epoch [1][4660/4982]\tlr: 1.102e-05, memory: 14449, loss: 0.8350\n",
|
||
"2023-07-02 21:42:22,598 - modelscope - INFO - epoch [1][4665/4982]\tlr: 1.099e-05, memory: 14449, loss: 1.9375\n",
|
||
"2023-07-02 21:42:26,607 - modelscope - INFO - epoch [1][4670/4982]\tlr: 1.096e-05, memory: 14449, loss: 0.9594\n",
|
||
"2023-07-02 21:42:30,336 - modelscope - INFO - epoch [1][4675/4982]\tlr: 1.093e-05, memory: 14449, loss: 1.2943\n",
|
||
"2023-07-02 21:42:32,894 - modelscope - INFO - epoch [1][4680/4982]\tlr: 1.090e-05, memory: 14449, loss: 1.4293\n",
|
||
"2023-07-02 21:42:37,079 - modelscope - INFO - epoch [1][4685/4982]\tlr: 1.087e-05, memory: 14449, loss: 1.4109\n",
|
||
"2023-07-02 21:42:40,878 - modelscope - INFO - epoch [1][4690/4982]\tlr: 1.084e-05, memory: 14449, loss: 0.6270\n",
|
||
"2023-07-02 21:42:43,202 - modelscope - INFO - epoch [1][4695/4982]\tlr: 1.082e-05, memory: 14449, loss: 1.4430\n",
|
||
"2023-07-02 21:42:45,786 - modelscope - INFO - epoch [1][4700/4982]\tlr: 1.079e-05, memory: 14449, loss: 1.2656\n",
|
||
"2023-07-02 21:42:47,371 - modelscope - INFO - epoch [1][4705/4982]\tlr: 1.076e-05, memory: 14449, loss: 1.9141\n",
|
||
"2023-07-02 21:42:50,147 - modelscope - INFO - epoch [1][4710/4982]\tlr: 1.074e-05, memory: 14449, loss: 1.1176\n",
|
||
"2023-07-02 21:42:52,690 - modelscope - INFO - epoch [1][4715/4982]\tlr: 1.071e-05, memory: 14449, loss: 2.7781\n",
|
||
"2023-07-02 21:42:55,645 - modelscope - INFO - epoch [1][4720/4982]\tlr: 1.069e-05, memory: 14449, loss: 0.4620\n",
|
||
"2023-07-02 21:42:58,615 - modelscope - INFO - epoch [1][4725/4982]\tlr: 1.066e-05, memory: 14449, loss: 1.2354\n",
|
||
"2023-07-02 21:43:00,944 - modelscope - INFO - epoch [1][4730/4982]\tlr: 1.064e-05, memory: 14449, loss: 1.4683\n",
|
||
"2023-07-02 21:43:04,011 - modelscope - INFO - epoch [1][4735/4982]\tlr: 1.062e-05, memory: 14449, loss: 1.3249\n",
|
||
"2023-07-02 21:43:06,962 - modelscope - INFO - epoch [1][4740/4982]\tlr: 1.059e-05, memory: 14449, loss: 1.0039\n",
|
||
"2023-07-02 21:43:10,074 - modelscope - INFO - epoch [1][4745/4982]\tlr: 1.057e-05, memory: 14449, loss: 1.9678\n",
|
||
"2023-07-02 21:43:12,406 - modelscope - INFO - epoch [1][4750/4982]\tlr: 1.055e-05, memory: 14449, loss: 0.6996\n",
|
||
"2023-07-02 21:43:15,125 - modelscope - INFO - epoch [1][4755/4982]\tlr: 1.053e-05, memory: 14449, loss: 0.9693\n",
|
||
"2023-07-02 21:43:17,919 - modelscope - INFO - epoch [1][4760/4982]\tlr: 1.050e-05, memory: 14449, loss: 2.0680\n",
|
||
"2023-07-02 21:43:20,500 - modelscope - INFO - epoch [1][4765/4982]\tlr: 1.048e-05, memory: 14449, loss: 1.6277\n",
|
||
"2023-07-02 21:43:22,713 - modelscope - INFO - epoch [1][4770/4982]\tlr: 1.046e-05, memory: 14449, loss: 1.9484\n",
|
||
"2023-07-02 21:43:24,366 - modelscope - INFO - epoch [1][4775/4982]\tlr: 1.044e-05, memory: 14449, loss: 2.6502\n",
|
||
"2023-07-02 21:43:27,079 - modelscope - INFO - epoch [1][4780/4982]\tlr: 1.042e-05, memory: 14449, loss: 1.2715\n",
|
||
"2023-07-02 21:43:29,023 - modelscope - INFO - epoch [1][4785/4982]\tlr: 1.040e-05, memory: 14449, loss: 1.8383\n",
|
||
"2023-07-02 21:43:31,660 - modelscope - INFO - epoch [1][4790/4982]\tlr: 1.038e-05, memory: 14449, loss: 1.6623\n",
|
||
"2023-07-02 21:43:34,660 - modelscope - INFO - epoch [1][4795/4982]\tlr: 1.037e-05, memory: 14449, loss: 1.2914\n",
|
||
"2023-07-02 21:43:37,720 - modelscope - WARNING - ('METRICS', 'default', 'my_metric') not found in ast index file\n",
|
||
"Total test samples: 100%|██████████| 281/281 [01:06<00:00, 4.23it/s]\n",
|
||
"2023-07-02 21:44:44,218 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
|
||
"2023-07-02 21:44:44,248 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/best_iter4600_acc0.7724842429161072\n",
|
||
"2023-07-02 21:44:44,250 - modelscope - INFO - Saving checkpoint at 4800 iter\n",
|
||
"2023-07-02 21:44:44,279 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4600\n",
|
||
"2023-07-02 21:44:44,282 - modelscope - INFO - epoch(eval) [1][281]\tmemory: 14449, evaluation/acc: 0.7729, evaluation/loss: 1.6707, loss: 1.1414\n",
|
||
"2023-07-02 21:44:46,870 - modelscope - INFO - epoch [1][4805/4982]\tlr: 1.033e-05, memory: 14449, loss: 0.6551\n",
|
||
"2023-07-02 21:44:49,076 - modelscope - INFO - epoch [1][4810/4982]\tlr: 1.031e-05, memory: 14449, loss: 1.6857\n",
|
||
"2023-07-02 21:44:51,074 - modelscope - INFO - epoch [1][4815/4982]\tlr: 1.030e-05, memory: 14449, loss: 1.9123\n",
|
||
"2023-07-02 21:44:53,385 - modelscope - INFO - epoch [1][4820/4982]\tlr: 1.028e-05, memory: 14449, loss: 1.4424\n",
|
||
"2023-07-02 21:44:55,581 - modelscope - INFO - epoch [1][4825/4982]\tlr: 1.027e-05, memory: 14449, loss: 2.2789\n",
|
||
"2023-07-02 21:44:58,108 - modelscope - INFO - epoch [1][4830/4982]\tlr: 1.025e-05, memory: 14449, loss: 1.9641\n",
|
||
"2023-07-02 21:45:00,888 - modelscope - INFO - epoch [1][4835/4982]\tlr: 1.024e-05, memory: 14449, loss: 1.6689\n",
|
||
"2023-07-02 21:45:02,999 - modelscope - INFO - epoch [1][4840/4982]\tlr: 1.022e-05, memory: 14449, loss: 1.9693\n",
|
||
"2023-07-02 21:45:06,302 - modelscope - INFO - epoch [1][4845/4982]\tlr: 1.021e-05, memory: 14449, loss: 1.3166\n",
|
||
"2023-07-02 21:45:09,602 - modelscope - INFO - epoch [1][4850/4982]\tlr: 1.019e-05, memory: 14449, loss: 1.5213\n",
|
||
"2023-07-02 21:45:12,571 - modelscope - INFO - epoch [1][4855/4982]\tlr: 1.018e-05, memory: 14449, loss: 1.8047\n",
|
||
"2023-07-02 21:45:14,672 - modelscope - INFO - epoch [1][4860/4982]\tlr: 1.017e-05, memory: 14449, loss: 1.5372\n",
|
||
"2023-07-02 21:45:17,717 - modelscope - INFO - epoch [1][4865/4982]\tlr: 1.016e-05, memory: 14449, loss: 1.3180\n",
|
||
"2023-07-02 21:45:20,504 - modelscope - INFO - epoch [1][4870/4982]\tlr: 1.014e-05, memory: 14449, loss: 1.3500\n",
|
||
"2023-07-02 21:45:23,506 - modelscope - INFO - epoch [1][4875/4982]\tlr: 1.013e-05, memory: 14449, loss: 2.2521\n",
|
||
"2023-07-02 21:45:25,399 - modelscope - INFO - epoch [1][4880/4982]\tlr: 1.012e-05, memory: 14449, loss: 1.9281\n",
|
||
"2023-07-02 21:45:28,444 - modelscope - INFO - epoch [1][4885/4982]\tlr: 1.011e-05, memory: 14449, loss: 1.4693\n",
|
||
"2023-07-02 21:45:31,381 - modelscope - INFO - epoch [1][4890/4982]\tlr: 1.010e-05, memory: 14449, loss: 2.0117\n",
|
||
"2023-07-02 21:45:35,557 - modelscope - INFO - epoch [1][4895/4982]\tlr: 1.009e-05, memory: 14449, loss: 0.5264\n",
|
||
"2023-07-02 21:45:39,804 - modelscope - INFO - epoch [1][4900/4982]\tlr: 1.008e-05, memory: 14449, loss: 1.2449\n",
|
||
"2023-07-02 21:45:42,752 - modelscope - INFO - epoch [1][4905/4982]\tlr: 1.008e-05, memory: 14449, loss: 1.3134\n",
|
||
"2023-07-02 21:45:45,007 - modelscope - INFO - epoch [1][4910/4982]\tlr: 1.007e-05, memory: 14449, loss: 0.9836\n",
|
||
"2023-07-02 21:45:47,247 - modelscope - INFO - epoch [1][4915/4982]\tlr: 1.006e-05, memory: 14449, loss: 1.8653\n",
|
||
"2023-07-02 21:45:49,545 - modelscope - INFO - epoch [1][4920/4982]\tlr: 1.005e-05, memory: 14449, loss: 1.9227\n",
|
||
"2023-07-02 21:45:52,533 - modelscope - INFO - epoch [1][4925/4982]\tlr: 1.005e-05, memory: 14449, loss: 1.1875\n",
|
||
"2023-07-02 21:45:55,303 - modelscope - INFO - epoch [1][4930/4982]\tlr: 1.004e-05, memory: 14449, loss: 1.9453\n",
|
||
"2023-07-02 21:45:58,165 - modelscope - INFO - epoch [1][4935/4982]\tlr: 1.003e-05, memory: 14449, loss: 0.6951\n",
|
||
"2023-07-02 21:46:01,430 - modelscope - INFO - epoch [1][4940/4982]\tlr: 1.003e-05, memory: 14449, loss: 0.7973\n",
|
||
"2023-07-02 21:46:04,313 - modelscope - INFO - epoch [1][4945/4982]\tlr: 1.002e-05, memory: 14449, loss: 1.8844\n",
|
||
"2023-07-02 21:46:06,392 - modelscope - INFO - epoch [1][4950/4982]\tlr: 1.002e-05, memory: 14449, loss: 1.5102\n",
|
||
"2023-07-02 21:46:08,801 - modelscope - INFO - epoch [1][4955/4982]\tlr: 1.002e-05, memory: 14449, loss: 2.2773\n",
|
||
"2023-07-02 21:46:11,500 - modelscope - INFO - epoch [1][4960/4982]\tlr: 1.001e-05, memory: 14449, loss: 1.6867\n",
|
||
"2023-07-02 21:46:13,716 - modelscope - INFO - epoch [1][4965/4982]\tlr: 1.001e-05, memory: 14449, loss: 2.5187\n",
|
||
"2023-07-02 21:46:16,514 - modelscope - INFO - epoch [1][4970/4982]\tlr: 1.001e-05, memory: 14449, loss: 1.1453\n",
|
||
"2023-07-02 21:46:19,686 - modelscope - INFO - epoch [1][4975/4982]\tlr: 1.000e-05, memory: 14449, loss: 1.6125\n",
|
||
"2023-07-02 21:46:23,065 - modelscope - INFO - epoch [1][4980/4982]\tlr: 1.000e-05, memory: 14449, loss: 2.1379\n",
|
||
"2023-07-02 21:46:24,007 - modelscope - INFO - Saving checkpoint at 4982 iter\n",
|
||
"2023-07-02 21:46:24,163 - modelscope - INFO - deleting checkpoint: /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505/iter_4800\n",
|
||
"2023-07-02 21:46:24,209 - modelscope - INFO - Train finished. Uploading models, waiting...\n",
|
||
"2023-07-02 21:46:24,299 - modelscope - INFO - {'done': True}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"def cfg_modify_fn(cfg: Config) -> Config:\n",
|
||
" cfg.update(CONFIG)\n",
|
||
" return cfg\n",
|
||
"\n",
|
||
"\n",
|
||
"trainer = EpochBasedTrainer(\n",
|
||
" model=model,\n",
|
||
" cfg_file=cfg_file,\n",
|
||
" data_collator=data_collate_fn,\n",
|
||
" train_dataset=train_dataset,\n",
|
||
" eval_dataset=val_dataset,\n",
|
||
" remove_unused_data=True,\n",
|
||
" seed=42,\n",
|
||
" device='cpu', # No placement for model, leave the model to `device_map`\n",
|
||
" cfg_modify_fn=cfg_modify_fn,\n",
|
||
")\n",
|
||
"\n",
|
||
"trainer.train()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 可视化\n",
|
||
"tensorboard 命令: (e.g.) \n",
|
||
"`tensorboard --logdir /home/hackathon/my_git/agent/runs/chatglm2/v1-20230702-203505 --port 6006`\n",
|
||
"\n",
|
||
"\n",
|
||
"The following code is copied from baichuan_sft.ipynb"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"dict_keys(['lr', 'loss', 'evaluation/acc', 'evaluation/loss'])\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAHDCAYAAACXsvqpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdkElEQVR4nO29d5wcV5X+/XRP6MlB0oykkUbJQc45CRtssLEwNjZg+2e8BkxeWHnBC7vLGlgwsCCz+y5LNtE2yXjBiw0YB5xzzlG2bMmSlUZhcp7pev84XVOhK9xKHaaf7+cjTXdX1b230q2nzj3n3JSmaRoIIYQQQggJSLrYDSCEEEIIIeUJhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhOS46qqrkEqlsHHjxmI3hRBCygIKSUIIIYQQEgoKSUIIIYQQEgoKSUIIIYQQEgoKSUII8eBHP/oRDjzwQGQyGXR1dWHNmjXo6+uzrPPKK6/g7LPPxoIFC1BXV4fFixfjfe97H/r7+2fWufXWW3HCCSegra0NTU1NWLlyJb7whS8UeG8IISReqovdAEIIKVUuvfRSfPWrX8Upp5yCT33qU1i3bh0uv/xyPProo7j//vtRU1ODiYkJrF69GuPj4/jHf/xHLFiwAFu2bMENN9yAvr4+tLa24vnnn8cZZ5yBQw45BF/72teQyWSwfv163H///cXeRUIIiQSFJCGEOLBz506sXbsWp556Km666Sak0zKAs99+++Giiy7Cb37zG3z4wx/GCy+8gA0bNuAPf/gDzjnnnJntv/zlL898vvXWWzExMYGbbroJ8+bNK/i+EEJIUnBomxBCHLjtttswMTGBiy++eEZEAsDHP/5xtLS04K9//SsAoLW1FQBwyy23YGRkxLGstrY2AMCf/vQnZLPZZBtOCCEFhEKSEEIceP311wEAK1eutPxeW1uLFStWzCxfvnw5PvvZz+LnP/855s2bh9WrV+OHP/yhxT/yvPPOw/HHH4+PfexjmD9/Pt73vvfh97//PUUlIaTsoZAkhJCI/Pd//zeeeeYZfOELX8Do6Cg+/elP48ADD8Qbb7wBAKivr8c999yD2267DR/4wAfwzDPP4LzzzsPb3/52TE9PF7n1hBASHgpJQghxYOnSpQCAdevWWX6fmJjAhg0bZpbrHHzwwfjSl76Ee+65B/feey+2bNmCH//4xzPL0+k0Tj75ZHz729/GCy+8gG984xu44447cOeddya/M4QQkhAUkoQQ4sApp5yC2tpafO9734OmaTO//+IXv0B/fz9OP/10AMDAwACmpqYs2x588MFIp9MYHx8HAOzZsyev/MMOOwwAZtYhhJByhFHbhBDiQEdHBy655BJ89atfxTve8Q6ceeaZWLduHX70ox/h6KOPxvvf/34AwB133IGLLroI5557Lvbdd19MTU3h17/+NaqqqnD22WcDAL72ta/hnnvuwemnn46lS5eip6cHP/rRj7B48WKccMIJxdxNQgiJBIUkIYS4cOmll6KjowM/+MEP8E//9E+YM2cOPvGJT+Cb3/wmampqAACHHnooVq9ejb/85S/YsmULGhoacOihh+Kmm27CcccdBwA488wzsXHjRlxxxRXYtWsX5s2bhxNPPBFf/epXZ6K+CSGkHElp5jEbQgghhBBCFKGPJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICQWFJCGEEEIICUXB80hms1ls3boVzc3NSKVSha6eEEIIIYT4oGkaBgcH0dXVhXTa3e5YcCG5detWdHd3F7paQgghhBASkM2bN2Px4sWuywsuJJubmwFIw1paWgpdPSGEEEII8WFgYADd3d0zus2NggtJfTi7paWFQpIQQgghpITxc0NksA0hhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAlFICG5bNkypFKpvH9r1qxJqn2EEEIIIaRECZSQ/NFHH8X09PTM9+eeew5vf/vbce6558beMEIIIYQQUtoEEpIdHR2W75dddhn22msvnHjiibE2ihBCCCGElD6hfSQnJibwm9/8Bh/5yEd8p88hhBBCCCGzj9BzbV9//fXo6+vDhz70Ic/1xsfHMT4+PvN9YGAgbJWEEEIIIaSECG2R/MUvfoHTTjsNXV1dnuutXbsWra2tM/+6u7vDVkkIIYQQQkqIlKZpWtCNXn/9daxYsQJ//OMfcdZZZ3mu62SR7O7uRn9/P1paWoK3OE6y00A2C1TXFLcdhBBCCCElxMDAAFpbW331Wqih7SuvvBKdnZ04/fTTfdfNZDLIZDJhqkmeLa8B0ICFyykmCSGEEEICEnhoO5vN4sorr8SFF16I6urQLpYlQs4YOz5a3GYQQgghhJQhgYXkbbfdhk2bNuEjH/lIEu0hhBBCCCFlQmCT4qmnnooQbpWEEEIIIWSWwbm2CSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKCgkASBV7AYQQgghhJQfFJIAZpTk8ADQv7u4TSGEEEIIKRPKfY7DeNmzXf7WNQCZ+uK2hRBCCCGkxKFF0onsdLFbQAghhBBS8lBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFBIEkIIIYSQUFSukNS0YreAEEIIIaSsqVwhSQghhBBCIkEhSQghhBBCQkEhSQghhBBCQkEhCQBIFbsBhBBCCCFlRwULSVOwDXUkIYQQQkhgKlhIEkIIIYSQKFSukPTK/sPMQIQQQgghvlSukCSEEEIIIZGgkCSEEEIIIaGgkHSEY9uEEEIIIX5UsJCkWCSEEEIIiUIFC0kvmA+IEEIIIcQPCklHaK0khBBCCPGjcoUktSIhhBBCSCQqV0ha4FA2IYQQQkhQKlhI0iRJCCGEEBKFChaSZigqCSGEEEKCQiFJCCGEEEJCUXlCMpsFNAcLpNNvhBBCCCHElcoSkpMTwJb1wJ7txW4JIYQQQkjZU1lCcrBX/o4M0gJJCCGEEBKRyhKShBBCCCEkNipMSNIKSQghhBASFxUmJAkhhBBCSFxQSAI0VBJCCCGEhCCwkNyyZQve//73Y+7cuaivr8fBBx+Mxx57LIm2JQzVIyGEEEJIFKqDrNzb24vjjz8eb33rW3HTTTeho6MDr7zyCtrb25NqX4GgqCSEEEIICUogIfmtb30L3d3duPLKK2d+W758eeyNKgh52pFikhBCCCEkCIGGtv/85z/jqKOOwrnnnovOzk4cfvjh+NnPfpZU2+KHWpEQQgghJDYCCcnXXnsNl19+OfbZZx/ccsst+NSnPoVPf/rT+OUvf+m6zfj4OAYGBiz/CCGEEEJI+RNoaDubzeKoo47CN7/5TQDA4Ycfjueeew4//vGPceGFFzpus3btWnz1q1+N3tKkobWSEEIIISQQgSySCxcuxAEHHGD5bf/998emTZtct7nkkkvQ398/82/z5s3hWho7VI6EEEIIIVEIZJE8/vjjsW7dOstvL7/8MpYuXeq6TSaTQSaTCdc6QgghhBBSsgSySP7TP/0THnroIXzzm9/E+vXrcfXVV+OnP/0p1qxZk1T7YkZz/EgIIYQQQoITSEgeffTRuO666/C73/0OBx10EL7+9a/jO9/5Di644IKk2lcYtGyxW0AIIYQQUnYEGtoGgDPOOANnnHFGEm0pHnt2ANhh/U3LAkgBqVQxWkQIIYQQUvJU8FzbHmPbWhbY8iqwbWPBWkMIIYQQUm5UsJD0YGIc0DRgerLYLSGEEEIIKVkoJFXQNGDXFqBvZ7FbQgghhBBSMlBIqjA+CowOA4O9xW4JIYQQQkjJULlCMkj6H425ggghhBBC7FSWkNRcvxBCCCGEkIBUlpBUxpy4nIKTEEIIIcSJChOSFIWEEEIIIXFRYUJSEepNQgghhBBfKCQJIYQQQkgoKlhIBgrbTqwVhBBCCCHlSuUKSWpDQgghhJBIVK6Q9ERz+UwIIYQQQnQoJAkhhBBCSCgoJP2gQZIQQgghxBEKSUIIIYQQEooKE5KKvo+0QhJCCCGE+FJhQtKEp1ikkiSEEEII8aNyhSTFIiGEEEJIJCpLSIbSjraNNApQQgghhBCg0oSkGS89SK1ICCGEEOJL5QpJKklCCCGEkEhUsJBUhJqSEEIIIcSR6mI3IHE0DejfBVTX5P9OCCGEEEJCM/uF5OQ4MNgrn+sai9sWQgghhJBZxOwf2s5OuyxQ9ZGk5ZIQQgghxInZLyTddGDoWBsKS0IIIYQQoBKEpAVaGgkhhBBC4qIChGQYwch5uAkhhBBC/KgAIekC00gSQgghhESisoSk5vrFa8Xi4hosRAghhBBSXGa/kFQWj27bF1FU9vYAW14FxoaL1wZCCCGEEBdmv5B0E49eAtG+qFhacqhP/vbtKlIDCCGEEELcqQAhGYYSGtoGgFSq2C0ghBBCCMmjsoSkFjb9D9MGEUIIIYTYqSwhacYz1qbExCItkoQQQggpQSpASIaZ2sbE1ERsLSGEEEIImU3MfiFpGZVWtTSa1tu5JZkUPNksMDGm2CZaJAkhhBBSesx+IelGkDSSk5Nq2wVhxyb5Nzrkvy51JCGEEEJKkAoTkiUUNKMPmY8MFrcdhBBCCCEhqQAhqTl+VN4m2IbCxBgw2Btj0A5NkoQQQggpPaqL3YDEcZvZJkhC8qDs2CR/02mgsRWYngamp4DaTLjyzDpyckISlTe3A9U1ERtKCCGEEBKe2S8kzYS2SIYqREQfAGx9TbbrXAJk6tS3n8GkJHdsArQsMD0JzFsUoqyQaJrUWVXDdESEEEIIARBwaPvSSy9FKpWy/Ntvv/2SalsCFMtHMldXHHNma1n5O1ngtET9u4BtG4GBPYWtlxBCCCElS2CL5IEHHojbbrvNKKC61I2abnNth9imWOgWQPNwfE1tYdsw2Ct/B3YDrXMLWzchhBBCSpLAKrC6uhoLFixIoi3JozpFYonpyBnM+SyrCywkCSGEEEJsBI7afuWVV9DV1YUVK1bgggsuwKZNmzzXHx8fx8DAgOUfCUrOIpnNFrcZhBBCCCEmAgnJY489FldddRVuvvlmXH755diwYQPe/OY3Y3DQPRfi2rVr0draOvOvu7s7cqMDEWqGxIjpf+KGsS2EEEIIKUECCcnTTjsN5557Lg455BCsXr0aN954I/r6+vD73//edZtLLrkE/f39M/82b94cudHBcBvODjC0XfShbl1JFr0hhBBCCCEzRIqUaWtrw7777ov169e7rpPJZJDJhMyfGDdxpP8JlGS8wKZETZNgmNo6oL6psHUTQgghpOKINLPN0NAQXn31VSxcuDCu9hSO2GadKQCqeRtHhyQ9z66tybaHEEIIIQQBheQ///M/4+6778bGjRvxwAMP4D3veQ+qqqpw/vnnJ9W+mFEUj+Uws6GTEJ6eSrBCQgghhBArgYa233jjDZx//vnYvXs3Ojo6cMIJJ+Chhx5CR0dHUu2LjqvlMcjsNXEpywDlmNs9k0cypmYQQgghhMRAICF5zTXXJNWOwlCIiW3KacicEEIIISQCkXwky49iTZEYAosgZf4fQgghhJQeFSYkQxJIcyYwDE4dSQghhJASZPYLyew0cMPPgfv+ZP09saFt85cICtC3fSVuUSWEEELIrGf2C8lN64CXnwAeucW2IKwQ89suicAch4Tk1JGEEEIIKTKzX0hOjMdQSJBo6xiqI4QQQggpA2a/kNSmXX4PqfgKNeTM6G9CCCGElDizX0hms8ZnLeu+nhdBNJ0WV2R4GUWYE0IIIaQiqQAhabJITps+B7L4JWW9jLItxSUhhBBCiksFCMkYLJKBSMIiSQghhBBSesx+IWkWj2ZRGWy8Op5Vo1bJ0W5CCCGElBCzX0iah7bNn52E2OgQ0LdTPj98E/DMfe7rumJO0eOyodKwup+SJIQQQggpLoHm2i5LpqeMz1mPCO6//QZ4/kH5fs5ngPv/Ip8PfhMCmQJjSyPplzOSopIQQgghxWX2WySnJo3PbkPbA7sNEQkArz5tfB4fs23nh4ropAgkhBBCSPlTYULSxSI5OWH9PthrfB4bBibG1OszWxJHhpzTASmNbFNsEkIIIaS0qQAhaR7aNkdwm4SaXSjqfpIA8PxD1mVB9F12GhjcE2ADNygqCSGEEFJ6VICQNFkb3SySYyPW770mIfnwTVYLpR92S+LIkNNKKgWp10kIIYQQUgQqQEi6DG2bBd+4TUhOT1q/D/Xllzsxbg3kCUIcOpJD34QQQggpMrNfSE67BduYsFsk7YzarIqTE8CO14Gtr+WvG5vAo1AkhBBCSGkz+4Wka7CNh0XSzsig9fukV/CNTQCmUv7rJAEtloQQQghJmNkvJPt3GZ8twTamdewWyX2PsH4fHgBu+TXwyC2IXwQWYM5vQgghhJAEmN0JyR/8K7DelBPSzSJpF5JnfEwiua/9HrB9I3D/n41l7/o4ACcro16sgtjzTTbusg51JCGEEEJKiNltkVx2oPW7m0Vyz/b8bWvrgBUH5/8+NZn/mxeOQ9sujI8Cu7c51MHpEgkhhBBSesxuIblgKZBpML47WSS1rIg3J/Y/Ov83v8CcwL6JpvV7Nos/Zu+OQJuFXIEQQgghJBKzW0imUsBHv2Z81xyitvt3A5Pjztu3zpN5t82MDVu/j48an0eH8pc74Sc2pyYZLEMIIYSQkmd2C0kA6N4X6Fohn6cdEpIP93tv3zLH+n3UZpHs2SxD5tPTwK6t+RHeXv6UgIvhMMBweKByCSGEEELiY3YH2wBAXQOQrpLPThbJcVsqn6oa6/emNut3J4vj5Hh+rklPHObfNpNy+Z0QQgghpISY/UISMISkk0VSzwnZ1CaWy2NWW5dX24Slk5Ds2azWDuXo6xR9IAkhhBBS8lSIkMyN4Gs2IXn3/wGP3y6fO7sl7Y8fKj6QZvxGqZ30YCrlsoA5JwkhhBBSOsx+H0nAsEhms8C2jcC918twtC4iAUn340Zzu/E5qJB0xGdo23P9AJsRQgghhCRIhQnJaeB3/wk8+jfgqXus63gJyfP/BcjUy2e/9D92NNcv7qRUhraD1EsIIYQQEj+VJSTNib4H91jX8RKSTW3AwSfI58AWSSdroub8eQa3oW2fcgkhhBBCCkiFCMncbva8YfxW12hdx0tIAhEskiEEn92vMtQUiRSahBBCCEmWChGSOYtk/y7jt1FbvkdlITkcTByGSiweQx5JQgghhJCEqQwhWZUTkuYZbIYHrOtkfISkLjSDWiT9hradlmezQN/OgPUQQgghhBSWyhCSqdxuegrJeu8yzBbJIPhZJJ0WT4w6/EgIIYQQUlpUhpDUh7YnJ4zf7EKye6V3GWYfycSHtl0LUy+Xc3UTQgghJGEqQ0g6Dm2b5th+70XxWyRrMvLXUdDFkEeSEEIIIaTIVIiQzE3gM2GaV3t6Sv7WNQLLDvAvo9Ycta0g7FJ6wIxPMvFYDZYUnIQQQggpHJUlJJ2EVpXiLJG6RXJqApic9F4XMPwyHbWdg5LkUDUhhBBCyowKEZI1HssUhWRtnbHua8/6r69bJJUFoMd6E+PA1teAoX73dYKURwghhBASAxUiJD3EoqqQTKeN2W2eust/fdWh7ZnfPITf5LhM72j2z6SFkhBCCCFFpjKEZHUMQhIAFu8tf/t3+6+bckoq7jBFjS4I49aF1JmEEEIISZhIQvKyyy5DKpXCxRdfHFNzEiKOoW0AaGqXv/Z5up1wFJJexKH8qB4JIYQQUjhCC8lHH30UP/nJT3DIIYfE2Z5k8LJIei2z09wqfwf2AFoWePhm4KEbndcNKiTjGKqmjiSEEEJIAQklJIeGhnDBBRfgZz/7Gdrb2+NuU/zE4SMJAA2tIhCz08ANvwDu/zPwwA3AuNNMNA5C0kvoxe7zSFVJCCGEkGQJJSTXrFmD008/Haecckrc7UmGuIRkVRXQnBPOrzxp/O4kJL0sko5zbQcVfhSKhBBCCCkuAVSUcM011+CJJ57Ao48+qrT++Pg4xseNGWUGBgY81k6IPB/JFGaEWBAhCQBHvA2461rrb0GFpBOxWCQ1x4+EEEIIIUkQyCK5efNmfOYzn8Fvf/tb1NXVKW2zdu1atLa2zvzr7u4O1dBI2MViQ7NpmUcgjhOHvSX/twnFoW2vVEBBhSSFIiGEEEKKTCAh+fjjj6OnpwdHHHEEqqurUV1djbvvvhvf+973UF1djenp6bxtLrnkEvT398/827x5c2yNV8YuJOub3Jf5ka5Gnkh0skgO9QK//Rbw1yuClR8bVJqEEEIISZZAKurkk0/Gs89aZ3X58Ic/jP322w+f//znUVVVlbdNJpNBJpOJ1sqo2COzG5oBPRVkXUPw8j7078DrLwKvPAW88QowPpa/zo1XATtel3/vuFD8K2e0XUIirxy1o6aJEK+tk6TvhBBCCCkbAgnJ5uZmHHTQQZbfGhsbMXfu3LzfS4pq2/C1eWjbbJ1UZc4C+bf5ZfnuNLS9Z5vxeXQIaGo1vsci+MpRNTrQv1vyctY1AB2Li90aQgghhASgMkxAeT6SJvEYRkjqZOrlr31oW9OAPTuM76OD+gKHQuIUhGUYbDPUJ3/HRoraDEIIIYQEJ3DUtp277rorhmYkjFewTUMEIVnrIiRHBoAJ03D3yJBtQ5vKy04DU5Ph2wEAE+NWMdazCZjbFW3/CCGEEEI8iCwkywJ7ZHZ9s/PnoOgWSfvQ9u7t1u8zFkkXtrwavG67xXHH6/nr7N4KNOwbvGxCCCGEEAUqY2jb7iPZ2GJ8jmKxa2qTv327rL9vXmf9PuIjJENRLmPXhBBCCJmtVIaQtA9tN5oCX+oaw5fbmQsOef1FI/AGkEhuAKjJRauP5oa29VyRThPbJMVwf8IVEEIIIaRSqUwh2dAEnHQO8Jb3Rgu2mdtlzGDzh+8Arz4jnwf75O+iveVvnkWygErSHPRDyouJMTl/01PFbgkhhBDiSGUIyXSVdcrC6lqZ6vCoiHOF19QC7fON7889KH/HhuXvnNyyvGAbQhTYsUksyr09xW4JIYQQ4khlCMlUCkiZdrWmNr6yzRHgPZuB3h1GxPacBfJ31CQkY5lTm1QUk+P+6xBCCCFFoEKEJKxC0h58EwXz0PjgHuDKr+bqTAFtHfJ566vAFZfKtIk7twB9O6PXS0EaP709YgUstWNbYs0hhBBCdCpDSCJlnX4v5bPbQQJwTjjLOmw+U0aTNTq8rwe481pgnIm3S5ahPrEmj5aaKwKVJCGEkNKkQoQknMWeG/O61Ndt7wQu/kH+7w3NQEOL9TdzZDeJj+kpoH8XMDVR7JYQQgghFQWFZNR13dZvaAbqG6y/9e4ovWHT2cCe7cDAHhmWLkVGh2TYnOeeEELILKOChGTCu2r3u2xqlTrtItPsH5nNUlzEgT5FZTYbU4EBXyT82LVVhs2HQub05DVCCCGkRKkcIZlOeFff98/W722d8rfaFiG+faP8HRsBfv4l4Iafu5c5MSbJzTUngURxkRgx68gZmA+SEELILKNyhGTQ4eqgdHYDK480vs+ZDyCVb6l87Vn5+8x9YqV65Un3Mv/0Y+D3/yPrekGLFSGEEEKKQIUIyVTyQ9uANdpbT0ZuF5KvvyR/d281fnO0OMIIznnqnvxl1I7xUggxHvpdhiebEEJIaVIZQjKF5C2SgHUO7/YFUq89cntsWHz5+ncbv034JJzWpmNr4qwkdp1VgGuFEEJmE/27OQtXhVIZQhKwTmUYB01t+f6Ph50IHLgKWHkU0LUMQAo49f1Acztw8vuM9cZHrLOV6MEibsQWREKUKDUdSYMkIaSU0TRgYLe4a00yDVulUV3sBhSM1e8H7vyDzLEdB6lUvuCoawBWf0A+p3OHtmMR8PFvyOd7/ig32fgoMGESj75C0skiqbl8rkRi2H/L0HapKUlCCCkT6LNfcVSOkGyeA5z598VtQ6ZRhOTYCDBmEo8TES2SvG9nOTzBhBBCSpPKGdqOm1QKnpYrp8V1uQTlY8P+FslpkxUyqaFtTXMue3wUmJpMps6ShWKNkJJieso9EJEQUjJQSCaGg5LUheSml6zm//Gx/M3NQtNpaDsO3bPzDWDLeqtoHR8FejYD2zbEUEEZUZCR7ZAFU+OSSmNqEtj6GrBtY7FbQpRgJ1XJVIiQTEIZhChTT0H02G3W352Gts1WyvERQ0zu2QHc+ltgcI9p5ZA3sV7H6JCpLQ6itiIo5Y6wlNtGSAKMjchfJvEnpOSpECGZAGHSCe143fn38RGH30xCUtNEfI4Mioh89n7gt98KXj9xx2whpm4jhIRB0+TFvNIEMPvMioZCUhV9WFoVJx/KE85yXnfUR0gCwH1/Av7wHaB/l3wfGQCmcmkWIt/E7AUiMTHOFE2ExEm5Jk4YHQR2bZVh+YqFz5NKozKEZNROqXOxcyF+5dqXH3aSc/qhseH830YH83/bvQ2Y22V83/SyTwMComli9axIQnZ+o8Niae7Z5L9uuT4cCSFqOBkFCJnlVIaQjErGzRoZUBmk08CSlfm/OwnJkaH83wCrYHntmdyHmN4Ah/qsPpJ9uyonejvsIRwZkL9MwktIjPCtq7ygFbKSoZBMDKeOUANa5hpfW+fJ31EH0ej0m/33uIdP7OJ1cI9EdlccATpFJt8lhBBSwVBIhsUv2CY185+BpgEtc4zvcxbI31GPoe2DT3Cvw81qGQb7bDs6FWORDCkIA21HKwshZBbC9+mKpkKEpOkBHibaOi40DaitM77PXSh/nayPukictxA4+9NwFCFuVssw7N4WX1kVBXtQQgghlUuFCEkzcQpJr7Ic5uLWOfFsYK9DgcPeIt/HR2QGBz11BGD8rW8Glu4HHPSm/HJ0q2Ucw6tJD9FmsyU+DBwy/U8p7xIhhBQEdoSVTOXMta2TTgEOE8X44iQKfTWpywpHniz/9FxjmiZzbz99N/DADcC7PiEpJACguV3+OqUfinNoO5VGuAOjwNSkzJRT3wjMW5RMHVEJLXLZgRISO/QCIaRsqDyLZKpAu6zSEVZVG0PdY0MiIgHgLz+VSO7GVmDhcvmtrjF/+9GhmKyRkIhy1+UR6xjqk79OvqAlCYNtCCkuVJJlC/vEiqMChWTYDirodorr1+cEopO/47IDDIFntkhW18jf7HT+lIa9O2QWnKBTHSYqsMvhoVCIYBtCCJmFsB+saCpjaNusYwplkbTX60ZdE9C/G7jmv/OXmVMFmS2Sja3AYK8IyaE+oDW33tgIcOVX5XNtHXCIR8S3nXQ5iL0ECd0PsgMlhBBSuVSeRVKVxhb529AcoRAFcWaO4raj+0cCVotkpt4Qlr/8D0PLmHM+DvcrtxLQCiuwdUaHJMioJAhrkfRbTqGpzNSk8YJEiA7vIUJKmgoRkjZBpyKa2juBjkXAnPnq5YZh3GNKrVaTRbLeZJGsrQNWHiGfN6+TQBbAOpw9Mgg8fjvQ26PWjiTTIjkVPTFuBBS5oWkyVN+/O5FmWety+RxoQxKJns1A305gz45it4QQEhYK/4qjQoSkmZSaaEqlxeoX1lKnKsy85rY2Jy+3WyRPOhdo65Dv+nD2uCmh+NP3AHf/H/D7b6u1w4vB3uhl2JlSmFJwagIY6gcGCiAkwypJc6e5cwuwa4v7usXMYVoO6FkMxjhfMSGElAuVJyRTsD7Qm9uBhcvCl+W5XEE4dO/rvqzdZA01+0imcmL4hHfL976dMizoFGAzPOBctv2t0estsn+X+7KwqLy1mtcp1bdcc7vGhiUynUOzhETE3HeW6L1PTPAcVTKVEWxjxyzwGlqA6triteWkc2So+ul75HtdI7BoL2D5QTK8rs84Y26jLl72OQyoyQCT48DAHqtFMjCl3hFoSDT620lYT47L8Y1kSSz140pICWLXkTTm+zMxLhk9vFK5JYXm+oVUAJVnkQSsw9XKHVTEnkxP2WOnvgl467nG985u4KxP5iKuXaZ21C1eqRTQOk8+9+9yF5JK1j//VYpKoS2S/buAHZv8fUz92lXqx7Uk4UEjJBBjI8CO14HtG4vdElKBVKiQDCEK7ZvUBLVietSZrnIu122TrOlB25YTkn073XNHqszJnahQc9qRgPXpqwdtp6YpbmNbR/cL9Y1+p+ghpOyYmpQXRS8f9XJC7+N1P+Niwi6x4qCQDGNprG/K+Sz6OkkGL9syzO6yvTlljopF0jFYxn63F/juD1xdThDueN0Y7vdjegp4Yz2we3sC7dG3883/E7JgQoiQwD20Z4e8eKv2JcSH0GkvyCygQoSkTThGzZmo55gMWK0nnd3y96A35dZ32ODIk+Xv8Wcav5mF5BuvWNfXA3SchGSejizBm98ebDM+AkxOqFsRhvoBaMCoyvoxBvaU4KEsSybHGbhUsZj6vyTuJ15XhMRGIEV1+eWX45BDDkFLSwtaWlqwatUq3HTTTUm1LT7smixyGpYw2/tsc+7FwAX/BizdL7e6w/pveS9w0betUeZ6CqBXn7EOw3btBcxdIJ+TSN8TmYDDzWHEXZDTFOvDSnP8yIiBAEyOA9tfB7a8WuyWJI+WLY0hSULCwpfniiaQkFy8eDEuu+wyPP7443jsscfwtre9DWeddRaef/75pNoXP/b0P5Hwu3sC1JOpB+YvsW7rJIDtM+HoFkkzH/0acN5nJSIdUBOSJWmRNH8OE7pZNCVJolIquSSzBZh5adtGYOtrarlVK5JyujdLpK3ZrPiBmr8HZbBPhv4D+6UHr4qUN4HS/7zrXe+yfP/GN76Byy+/HA899BAOPPDAWBuWKGYhmYBx0bfOONc3Jy0HgH/4/4zk5bqQHPLxkdQ0JHr3h9Xtlg6sXHuncm03wfgY0LMJaGqTVFxJoVsjR4eB5iKmIiOzh62vSv+5cJmkBdq9TUavzNPu+tGXy1hR36QwVfBs6KtJWEI7C05PT+Oaa67B8PAwVq1aFWebkifyvNIFGKJUFZJVtneBTL3xuTF38ytZJNWqiw2l+mxi15JbLuYGx1leKVp3SXAGcon4h/qK2ozKpITuoWy2/O5pvb1jo0ZAUd/OcGUVwipPyprACcmfffZZrFq1CmNjY2hqasJ1112HAw44wHX98fFxjI+Pz3wfGHCZaaVg2KdIVBWFDusFGdkOPJyecq7Tj6Y2w1dyZmi7L3+9vLaXoJK0D20XbIrBpI5FhHLj3v/JCWDPdrFo1zfFVy4hcVNMETc9JW4HtXU216NKooRE9PSUGEaaWos7kQixENg0t3LlSjz11FN4+OGH8alPfQoXXnghXnjhBdf1165di9bW1pl/3d3dkRocC6XoI5m3achtzZvpwxGDexxWDDBFYmRCj217LFJob5BjaIkQV98sULmlxO5tkv5k19Zit4TMJjRNrqvZYsXS8zO65eglQp4/e0Ls2ipCsueN5OoggQksJGtra7H33nvjyCOPxNq1a3HooYfiu9/9ruv6l1xyCfr7+2f+bd68OVKDw2ETFFGHtp30SevcaGXm1RFABB2zWv7udzQsjdOjtt9Yb43odurkCyV49Hpmy1zbjpRBW2fLg56UFmPDkuh7x+vFbgkBco+DQozkFKjP0wU9sxyUFJHn2s5ms5ahazuZTAaZTCZqNfESeWYbh+2b58ibkusDOqFgGwA47p1A1wpgqS3gqX0+0LEY2PkG8MIjwNFvl/xpW161zqZTDALPNmMf2nXZXtMk+jXwsEecPpLxFVWR8PiVL3qOV3PEcFDGx4Bhc+5XXhDhiUFE8vATHwIJyUsuuQSnnXYalixZgsHBQVx99dW46667cMsttyTVvmRIwtcuZfe9jFpPgG2ra4AVBzuLp85uEZJ6BJ4++40lIa/qNIJxoKfxCeEjaV82OgyM2Hxud2+XBORtnQh0DBPbfZ+C+3ZJHsEko4KdYEpLUqr0bLJ+L6qQmQU3imJ3Gx9UnpVGICHZ09ODD37wg9i2bRtaW1txyCGH4JZbbsHb3/72pNoXD/bYGkv6nxg7Cq/7J3CsTQzzgQPGLDxekdvazH/JM6MjoyYk14BdW/I30WexGdyTnxpJmajHQtHfMps1/Fdb5uRH4OeVOQseaoQQK5oGDA8AmTqgpsRG7wAE7g+pIyuOQELyF7/4RVLtKCAxTJGoP9BLMT7FvmGDSgogLdi+uEUQj41I9ZkGhTIU63H6nAhFHtr2279i6MhsFkgXYxbVQlrIvShz4R4k0r9/l5zvQlvGlSjitVCIS2BkEOjdIZ+7941envneKdQlrAcllQojg+JP2TqvgNk+KpcKmWvbRtQLa2bzBKO2nWa2mVnkuiB/mzyLpNu2ETvr7LQMofe84SMCNNtfVSJGmZeCMHGyqhYNh+ugf5dx/oYHgC3rS3R6zVnM5Lj8i8rUhKStGXDK2GBD02S9ob5ovo0kHIlGhId4BmWng/WXUxO2fqIE+trd26RNo8Phtp8YZ6R+ACgk1TeKvRne1YXMI2lHzyWpJ6V1Ig6RZQ4yChqRrbKOZrdSqbQ5pI+kU9EjgwGm7SviLA+aJoLeadjfj4E9wPiIWBf2bJffwiYxJsHRNJlffPvr0aPq+3aJIOjfFbwNpUYhmjSw2+VarzBr1nQuGHPbBvVtSvnlIxsiulvTJOvAjk22WALiRoUIybxJq2MuT2W1OKO2A5SlWyT7dgKP3OK8adIPD/O+aHkfPPAY2g5s0PTbwGP51KQI8Z1+1tZgxQbbB9vK09PS2dkthtNTInhHh8OLkVIUE5WAlnX+nHzFBayrBNE0oH+33EtFEUUxi9W8+zdA+XowZpD0OrOtvzDvD9OkKVEhQtJGqJltCo1HuzxGtvNo6wSW7Cefr/2e0VFYiKMjUC0jZB7JMPWFPrV20ZrUAz7CcR/YI8MvSVgM6VNUWWiuX9SYnhKLfWKCooBCpRiiqJRutzgMDWWvK8t+BwpOBQpJhzQ9IYoQ/HzekprZxktJ2pal08C5nwbqGsX3apfDEPeQ37SVKXlbv//PuTxxAa17Th1RQINkcIuk/VhoMty3baPzcIVnxL3pNlEZ6lAdgo/y0IoqaEvp4UVKhzCX5PbXxWJfrnOSzzaLmuUkFuBGzzt8ZX48/a6H7LS4/8y66yY8lSckU7AKgyj3WaJR2zFMkaijwYjG1KMD81bwIJ0G7r0eePhm4NffzF8+MgjsNE2152lIDBJs45P+JwgaJNXO1AQw1O+ygkI7ppPymVGI2o67TMuq5kjPWagypybF52nElOha00pr6CrO/iTQOYwh0A7ID2zo7YlWrk4xH9gWt5wyEQ5eUduJ7EOZHBdV/LKF9LwhUzUO7C5cm0qcChSS6RgelDHlePRcP8TQthctuSkcHYWkCcc3Lc2Yk3m4X2aeMLN7mwg08/p+BB7aDthZ5R2jCGWZV4/kfO1lnYxQbChmoVj0oneHRGGag852viGR6SUZLFCs8xPjhVhIC+VQn/RRoYSSh/AqGxQbvmurzwplewDiw++5o2dVsMy+VNlUhpA03xtpm5BU7XcKHejtmesyiJMkZDpEfS7wPR5CcutrwOX/Ctz1h/xlcxcan6P45c04cYcQc4nmlVQsT8kiqdjOQPsQwiKrr9K/yz+NT9zHs9SsN06WR91feKSID4QoL0uxtaE41cZKb4+8BA/7uek4YNn/MhBS2az4SE9OOC+39JOw7tJYmHQ4fqMlCq5M5YT9+LlRBpdKoagMIWkmlY4+tK2cijFCUE8YH8mUy7J0WubdBoCtr7oXe8918vfJu6y/a7BaHAPnFjQdmJ7NMrSctEXSsyyn5V7rmqP4VHwkA/7uvzAkmjxsBvb4i/84h7b7dkoKkSmXBx1RYBaLyuF+sYwl4VYQync4YKBgEKanpM8LI3DdGNgtL4fbNyqsHHUkJ3gR5U8JvNyVGRUiJE13Rzot/9o6gbYOsdYFLWPmc4IXmVceyaDP+XSVMWPCpnXAy084r2eO6L77j6YFmjVJst+QlV9gTO8OxbdWL2tekXzbYs0r5vHmG/qt3rad8sM6xmt5sFfOT79CMuwkCHqO3I51WVscwvpIJtSnmY/xnh1iPVQd+o7LwqVpLoF2qsFxIeoc6pN+Vc/LGgdOmTcspzvK8Qpx0Qc9P0ETnheags6oNjuoECFpQheOzW1Ac3vw7aLWq4zHzDZBmRiTuZz1qQsfucV5vXFTwu3Hb7Nm9p+MYpG04TmntAmloB3FAhzTHilW5mmtDFhWiNUCkdfWEMPssbUrRgGgSv9usYYWa7g6Oy3J4JXrr4AHVe9OZ1/URAKdPDrNXVvl2vCaOch+OqJY5zXNlvHBYX81TaFvClqv/Yek34gCuN2Mj8o5iCsQKwkoHgNTGUIyZbNIhqHKQQj6XW/mep22V902f6H7716bnXqB/HUbZrF3aD/4rKT20GATkkEtTbYDVVUVQpCFtbTlCGIR8ErGG2lqRq8ON6AfUlTiDEYC5JgN9ccoDkLurx5JGehBFeOx7d8t0cteM0klVLWFsNohiYfoUC9mpmFMGq/91v0D87I2JDi0be73nQTsUF+Iqfj8Tm6R/MdVVtdnWhp2ypxhYnpaJlYohqiLYpEcH82NyFSWGK0MIVlVY3z2DGLxQMmimPc6G3B786Zho7Y9Fi5YKn+dIrMnxpw7uj98BzO+djoDPhbJ7a8b5WtaflqQdHVwH0lt5r/8Za7b+6/iuG7ekFtAkaWvMjokkcEqdQbFdVvVttquk6gd384t4rLQZxJwpZK2xQkli2EINRZkRhA7xTpepRDw40ncL1H2az/BZpi3cbo2HFORRSTwCErU+iLU4eaGsuN16TvDjCxY2hN1qD7gvvVsFh/xUEFN5UtlCMkak5AMbZE0DceqDndUm7aJU0iG9Z2sb5a/2en8t2A3C4ouLqdMIvOVJyS5t5ufopY1xONgb75ATaUQ+eHg6yMZtANRHY4OYEn1TbXhJYxDHp8wfeDYsIj/KFXr53hkKMTGDpij43duyU855YffPWq+3mel9SCkSbIUD0XibVK9aaIqyZjwPbUR6oxlFFzRhWa4X4a5B/vy19NF96hdSMY0TD89Jf3KqFN/FYObj1tE/SylMoRkda3xOVaLpM9VZq438NB2AqemusYQxHf8rwz/vfqM3MxeomdsxHpj9PaImPS0TOaEntMbpaYFt0gCyfkqBimm5B2xQwyf79ziU0ZcbQmA2So8PgL0bApYgMcDx+wLXHRcjlHRrq0C1quqCaYmJDWZkm+2SqGphHyCfSjUOY17pMOvvLD7paei6yuCv2Rvj7xAOz334rDQz8ZJHTxQjHooc8zWxKCCzmk71Run2mwJLcTQtsLFq7/pvfiIRHDrvioLlrlvs2uLISTbO+Um7O0Rq6bb0ISW98G2MOgNaheVhYzaTmjozzP4xfcHlQqsPosaArzQx2E1jrZ5JLzunx4Pd4OiEuMBC/QcK9TLUciy9dRVfTuDBUi6MTbkPoFCrLuv+MIcO3H3VyY3pYkxoCZjHdlzyiO58w2gpg5om5e/LBBhBJlCHZ5+8OY+sxSNBaVHZVgkUylg4TLxEQwbfZ1KA3UNQG2detSxRcDatkmlvMvxSv/jdXMFeRMyOzzrOclOOgf4yFet6/VsNm6ueYvkb/8ueaPb4pKXcsZH0mWZ0v3pYV0rVgJtJUOom5UpQv2qwtL8884tHpZmr+vEoezxMWDH5oARpiXsI2mmmA+LxNwTg+x/nPUWAa8pAZ0IO+wYONDO94fCEJdxbGRQngU9m62/24/L6LCMYvkFZUbNhOKGuTl6KrJA25f7DVF4KkNIAjLMXJMJv30qBXQsBjq71R9SqRQwf4lsZ/exXLS3940UKmpbgcNO9F7eMkfya77pDON4bdtoLJ/XJX8fuMEn2tDHT0a/WScngJcedfZV8XrIFiuPZKydTBIdlqlMr7fugDoSPZuAiVHv4CF7uaVqkYyLqckYfKESU5LhKPuHaIGDK4KUXYwhdA2ITUnqhoe8oEwHi6QrpmVh4hWC7srUhItLhKIfZ+j7obKGtitHSMaF1/SKTtdcbZ1YMp3KCRt9HcJQOcNb3gt84Avuy/U5uY97J/C28+TzjlwgRrrKmCEHAF55yr2ciTEZinJMAJzFzMF66EbgxiuBP/3EoRCPDj7rc4PHMDKr1I7Q5fgVVeQHuuvsTUHaVSYWybDt3LZBLPmxJqkvBgH3P1vE1CxOxN0O8/m0FB21nhI5Xp4oCizP3xVddpKIA3Cqf2JMrKRmQana93peW2EzqwRET5014ZH/tMhQSEYiwA3kSExD1Crl6VTXiIXUjeY5xueW3GfdR2nOAmDZAcZyr2n3hgfkxnWbSUK/QV98RP56Td3ohJJFMibRY9GRcVovCm2NUq2jRB94u7ep56kMNLQdoi3m62AqQsoftzKLhUobet4Qy7Q9TVa5GmHM+7x7u7jrzLhwRLUouoiS8dHc9Wy7dmK5BiL0K46uSPpfVSGpWEHaJ1l7WPKakxI//76daq45pZYOa7BXXMl0g04JQiFZqtjf1izfY+ixa+ucf69vND63zrUuW3mkWFdPOEu+68mfg2K+UTMO1lqn9TTYAkd8bvDJCf/5pS11qa6n8GAJ42/pu4nHCubOMY4HkWcRftee2WLvUNDURPg365FB/0TGM5RJ1+Z6vqKexwB5QoNa3fShTfvEBn6bquxSkOt3ZBDYsck6Y07/rmiiRA/CiSV5uua+zz2bpf2JzDcet/jJlef68h6gPotF0nSNurrhxBxso5LntRjuCF6UsCVSp0x62wrEPvRtvunCDombOfPvJVH7ye8DulfKbwcfb12nqc0qYOcvkb+6wAwrJPXO84WHgd2mYBAvf7PRQevsNCWRvDlyYS6f879aGB2yplWyO7+rVBfYSTJHOuJLzLaN8mYdNnG31zCyJegi5qFtr+G74X7ZL/sUgEGJ8wFm3v3RIeCNV9xntLK0IUglRX7K7t4mw5a9O4zfpqec+yVVvz1PQpmuFduQY892hesoSWt7DEPbnj6GLsumXPr+xKzcqvsZ9hqPdWw7xrKSoTLS/5Qj9gdhKg1Af4jG4JuxZCXwj98Wv8e9DgVefhw4/K3WddJVIib16Lu2Tvmr+1H2hxCSkxNATa3kELv5l9Zle7YbYhWIqfNXxaM8i7N2sQSs6bNbJLamhRf3nnWbBVqAd0+vB8z0lASg6XMNu1nIgxBWSEbUBzNDvEEs4IDDDFMJXVv69bJnO9DY4rBCTG0o1tC2/aXE8YVU1SLrQSFu/ZFBEVXzl4Yvw3IdxtjoWIa2XbaL+hJmpm9XxAICiv8w684yKCRLkZra/N/SKUNHuhHUr1KPGm9qBY54m0S2298Mm1oNIan7TLbmcoMN9UsHYM6X6cWz9wO3/hY44Dhg70Pzl+/aahWSXsSe/sdjmXm6qyiJ0PNezkMIZa9txkZ8fIBCDLnbiRQN7VDwwB4Rv5l6tSK86jcPvRUi2MapflWhPTmR/0JQbs+hOK1dSeNZdUJKUoOPdc6FIJkANC3/Ws8TZTEp/DBC0jxVbjrtfjzimglG04ARL8t77lgkbaMoV3/hkHBoOwqh38T0Dw5XW8sceRu155E0P6CSSm3iVOzS/Y3Pegqj+qbcrD2a4mwTOZ64Q/6+8BCweV3+8rxpGhWHH3ZuAa7+T2DjC+ptCYuKBcm12SGGjVS2BWSIbyjAufC8hDwsiVEEmsXvLFeObs1Tzk/pJSTjFipeuYzc6lJsw7STBSbO9oe0yJajVSXqLFdOixLpYhWPbaC0OIU4XyYxGGR9/XNvD7BlfX7aoKQsknnNMfdfpna5b+C8bZB6KkxJUkjqtNuGbQuB47WWcn5YKz/Ao1zADtsefSpw0PHA6R81FqdSwfwkJyeAKy61CsWNL+avF8hCY1p44xWShuWPP/Bvi0p5saxX4LJ2bBKLZGy4iCg/i5ub9pqcsArJsJepp0Uy5BCt0nSdPt/joEg6Umlo2/EYqRy3oDsV1c8gTDtULfUh9iXM7oS9x+Ig1HHyEel6gNzAHrhea44vVkDwjiLkdeq6eim8WJVCG7yhkNRpagO69sqPVC4VLA9Q0+cwSV2V6shRUwucegGw8ijr73Y/yd3bgIdvAp5/KL+Mzevy51M1O8jrhLVIBrGKRiWq9SPEarExsCfcEJLlRTtA1Lblzd4W8ZmIELNNBxmE6SnxLTMfnyBW21gIKYSTaoLOUJ8tJU6U8h0qmMmT5zXBgVeZIetVKtu0Xc9mtYAlawHB2xAov6JPmZoW3TgWdLDETYhptmV2n+mkMk4EthRqjh/DVR4Dpa8j6SNpIew83LHictVYhrZNv1dVA9kJhwUh8J3f27S8xWSR3LUV+NV/GMsy9UD3vvJX0yQ6W2fFQcBrzxnf2+fLkMdQn6TuUCX0cKtbeSHWi3yDezxk8r7HUOlQn/zr3hf+Q8QuOxo6ibC9vpD7oWyRDMieHeILO9gHdO/jVHj4slUpiWFlhzb05l4Cd28DulZ4rpqHPdekE8P9cu/3Q2b8CoxLQ/RE1Lpvt+vmAY67a8CSa+EB1s0RxDhQkteMl+XSpc/TNMnm4fsMDjHTRCQjZcwjG7MUCsmiEOKCc7NIVlUHsKLESKvJIvn8g9Zlf/6JTK947sXATVcaD6JD3iy5KM1C8oLPy0P86m/lWxZVnLgBxLPTAZSkk4N7yKLUKXAnZa4uGzKIJW6xH6S+YBuarGFuQ7uKdcV1miKXE9KXNcgxnJ70tyKqRLLnTbkXkLwm537YsUn+plLi110IXF8AHZa5YX9Zm5wQi50+Q1osU/gliGr77MumJ/OFZCzdhtNLsWK7vNpfWW6QnnBoOxIFvIm9LJKW3yNc3X7ze6ccLJLrHgMevz1/9clxEYe9piHtpjaxhh1wnHzvWiFpXxqb5ftQn3qCXnM+QfMbfBh/t9CE8BlyXa+UhsNtlgPzsbZMEZpbJ4xrQegHoGLUdiBLQsim2JmatEb4B8V8TLIxDfUp1au6nsOKPT5zrytVlvDY6+S49zphj/P4qKRwUi5XVUimjOATTRP/751v+ASkBDiGu7Z6lBXCfOe52NbHOYk0/dkWZqrRsWFg62um+87FdSI0tEiqQItknKTSUJu6b2YD9cVuIs8sJCNfyAE6ozC+pHquwFPfDyw/0MiVVp8TktlpSTze2Crfld/gTe2eGFNPJWMhYIcRysKmyT4O9gINzaGrTxxzsnPA2fo7PCB+rnMXulud4vQnVVk/ikXS93QqlB058tRUx84t8nf+knhybCo3IeiwYcCZWQpynTucTGWxEwB9IoCFyz1SoGmOHz0ZHZJ/C5dZp9/MTgOoCWiRdFg+OiTnzWmq3FCHwuue9Fot90NVFTCVDTfLj36f7NySc9nxaUTQPqkk+uWSaIQntEhGwX5+OxZJcErHovjK1HGbIrGq2hA1VRHfC4L4SOq5JM0rnPkJmSnnnE8bP594tvE5k3sgptMyxN2WK6O6xpgqcbAveLvNwsfLQjCD01trgPqipH3q3SmBBdtf9ymniJ2HPSDHKRp6z3b5PS9oynYNZaclmtwuNpN4e48SbBNLdGhEnIrcsUnmCY6lsIhkp62zSwVFqUlxtDuEVS0KXrM0aa5f/BkbASYcApyCCEkNcLy2g7z0RDp0Chvr+YwdX0psIyB+Ly6Opz7g9RD2nLlljdA0mcNdxV/YzvRUzNk4koEWyTjJ1AMLlqmv7/fsshiC3KZITAELV4glr74pwYvONmVjXQNwwpnAfX+W7/sdBex9mLH87E+L2GybJ9a3jS/kR36baWwGxkfEWrcgZ6lUuYn13JQ6vT0y5NTZnS+M84JIwuJTxugw0NzuvMzVp0zz/KpctzIO5WQa5BwEqTNdBUy7DEllpyXaN2AzQq8fOv2PQnlevm+x4VLo6DACJTuPUq+fMAkctWyvJ4ahbU3Lt5qrbBNmmavPrOtF4/49zDWj+W0f9kKMMU2c57F1/WKgC0k/i+Qeh0wfKli6Bc2zKXkLI+eKhgy7jwzIv6Y2a9njo2Jgcbu3d0d4cSsgFJKRSOJp4nIRuwXbADI0oF+gkfqHIKldABzzDmCfI8QqZU5cDgBL9zM+73+M/POiqU06Cst82pDho3uvB044y3nWm1efsX6/4efiE/WmM6RO3XL66N+knEwDsOb/c7CoBnzznJ52f8McH3HvACyHsMT8b9zOf56IMnX41bUhg70iDEO7LopSpk/DJ8bEt6ytIxf0ENS6NCzHamYINODwq0ITQxPFahaprhxB92uw1yfDg9OxDbpfSRzsoG4DcH45ijq0DXjsnov1zjGptwoKQtrTImnCc8Yar0oKNLrjdi7cBHJfj8wO19AsLkJORA1EKxAc2o5C+3z565deIjTmm9flVOXd1DEnJPdb1N4JrDhYbVi9odl9vbld8nfbBtOPGnDt94DXXwT+8rP8bXZtBTa/LJ8X51K26DfeAzcAv/qG3Kh9u0REAiLyHrlFUpl45VQcGwGevsdlqFyT4UbLTC02XDs981CNtUiMDstQplu7tCwwEVPH4vhAV7x2zH5b6ZAps5Ie2g6K367v3ibX1s5ccEmQ5o+NiA+X5dp2IgZXh/FRqWsypL9mlNMyNqJgKVQZivXB0WoetBDz6h7iI+jIgF2UR73Ow1ghU2mZ2tZ7pYDtsAyPqbdHZZRAD5YM4yOpgmMbVK2oXngdBzcjkImhXKL2oNb1EoRCMgqNLbkk5nbrlioBbmaVwJuo+EZtRyy/th6uheh+pXf/H/DgX43f9Wi8gd3AG6/I59Fh+Xfrb4319jokv8zJcRGUV3zZ+vtgn9y8Zt8ze+dx73XA7dc4C1gN4ZMnu1okc+J0YsxdoO7cYgiZJFCxSOr53pyWAclOdeZUn07fLiM5PhBMSygPU4ZEOZF3DNbWns1yz4wqPJyyWXkZs7z0FMh6E4V0iIG0uF9cog5TK1di2mZkUHyNzfeYU5kq2TvcFqsI5zyXIe+qfBuiC0mnF8Hh/niD2JTaGtEdwY5TpotZBoe2o5JkEvOaDFDXCFRXoyBJq3yriJrw3FZEXaMhFPUIbgC49rvAEW/L9737/f+IYNzwvGyrO6KvPApYstK5zufuz/9NF2OWDsp2g7/0mPzVxauFmIZQzcWYrZDptHMdccws4li5ju38PveADN+f9iHbpubzEtaHSMEyEIRBm/jWcxxGiXhW9aOKVpDaakk8gIb6FIPTEiLsLoXqc2Ow9gbdxj40nZ0W8a6acFyzWTSdXGlmUugEbWYUi2TI7dy6nJn0Py517N7m7NbkV5/jb36WZvuyAPvt68+aW6cQOXULDC2SpUwqJZa69vn5ATbJVBhyWcg6zMPcHYuAd/+DfM5mxe/SLg4A8YnMTosVRReCbz1XUll0dsv3dJUIUTe2b3S3KOqdgXloSK9nalL+RXmoWzoRc8fjN6xTgDdZc9s2rQP+9hux6O60zYHuZZFMHFt9muZ8LifGxE1gSmFKSC2LRF/UlI9R3GLHB6do46RPp+Mwo8s94UZgd4qU9zmI7YXBZ/3xUWDLevXroX+XwsiHX1mayzoBlKddEAdug896XhZJILo7j8LouvsGMVRaARZJCsmywS1q22O9wFWE8JH0Y16Xex32+lYeCczLDXHv3q4WIVpbZ8xacfY/AgeuAk45H9jn8Px1P/ktSaSenc63NGoAbv4l8MuvyUw95kTqfTtlWOlX3wB+8WVg3NS5Z6eBZ+6Vt+YXHpagHvuc4WMjRs45NzSbqNS/Pnyz+GoWAvP5MAcx2QV9LEIyrIXD9r13hzGDiRMqDyE3S4hnOxJ4IIQWO7ltVZKhj494p6tJVEm6lB27ho8jlZNHGbu2BEhT5lB2kMTbfsEWA3sc+kn70I8DQQNmwl6bKvdJyuYjGTaRu3sjHD4X+P6dWSfgLGH2VcaGk3cfCgGHtkuNqC/ApWY1d03UC+cAota50lH3bvcOhtFp7xRr5K4tIihXf0B+HzD5y9XWAe/8sAT7LDtAhN/1lwOnf8SUxFYz5gS/5dfWOob6gBcfkSg7AHj9BcMvdt3jwG2/s65/7/XAx75uzP5z9bdEjH7oy5KqScct+lIXNn07gftz6ZVOPMf/WKhiHzLTmRwXn6TGVmvex6E+Oc6yMULPIGNpQ7jN8jb0e9lQ7dwdrVwxPWx8h9tClmFmdCj/BcYJfSYa1+TNSVMIi0zA4x30XOg+2l716b87LXJLlxWGiTHJdGEP+FR5Duj9gMpQu2fQjKK10vE4+/hIBiEugRU2jZhreW5lpxTKt53InVvk2ZNYgG84aJEsJo43u8qFW6RgmzjK9LJIQjPE165thkhYegDwqf8yVjPn4upaAdQ4iFV9dhwAOOhNElkOAMtMaYpuvNKY3s8rYvDJO61TwW14wfi8c0v++gCw8UXjsy7KnnvQY0TJPsytWYMgPNOdxMTV/wlccalYY/ttQlJndNgq3gptkRzYEy0ptmNTwgxtK7Zf0/ItULu3OycZjzJ8GGVqRnsbdm8PN+2lUvm2uuz4WZB73lBzV8irN0Yhmbe9y2fnH3wswjHjOrKdkhePLettwTsKhQQ5XOZ13ayr+nMgqpDctsHfghv0pS7Qvnq8UDitE9ZXsgR9LCkki0qQqG3Voe1Sw95YDyGpAZif83N8+UlDsLTOAeobjfUsQnIvhzrgnmZo6f5Gzi5NA7a9Lp+dZpDQ2fC8WCF1zJ/rXKZj1NMSmZkYs7XV5Qmkd6h6egjAYQaZCDh1eNlpSbM0OQ5ceak1+a/d6mfurKMm7A2zeZCk2EoWSZenbRxuYds25qf3UMqHZ69Pk+snaRGiJ092m/YyCirHzG8Wn/GRcEnRo4oU78ID/VwQITkxlnsZcFOSMAKtzP1MGB9J87I8q6DPSTdHmE9OiBtQFGE/ohg85llFDC/HbvsQdGi7TKCQLEuKEGwT+u3JdomZi8kbUtGA5QdJXdtek4cwADS05Lfl7ReIpfHwk9zr1iN2lx1g/FaTAT74JeO3nTn/OvuMQGd8DNjvaOdyN60zhqdGXXLa6cLP3HGMj1r3383XUP9stgSafTaj4tTJeVmgvKb2KrRF0ozSlGMBLIeq9GxWFybTMQ236cFDW1+Lp7yi4fTyVIAHqtf5imqR0ly/OJddCCH5m7XAz75o9BtaVl7OZ0RjQMOEynDva88CP/gnydM7s6rffZKyPluSTG8GQOkNNkzXND3l3ocGSiCvQAkK0EBCcu3atTj66KPR3NyMzs5OvPvd78a6deuSatvsJ5EIrqSCbWIww9t312kKw/omYNHe8l23/OkR1LofW/e+wMHHA6e+3zsR+oVfAt6zxiok9XrnLJDP+pC1ObXOSecA+xyWP2d6Q7OkHZocBzY+L7/ZhxTbOuSv3mGbh+rGR2E5P+YHisVHMtf5mjum634Yo5O1ln/tmXMw6szJJdz3FGxRfSQj3AMq4lq1ePMDb2CPu5USkPMYZt7cKIx6DF337ghupStW9GjM7meOOCVG93JdiXwsAm4fJNhGuQk2saKPiDxzn/H3hp8Bf/iOfA8cbKPw4nT95XKc7/sT8Ncr5K9KknEnF6ekcCraM7hHsS27tqqlZ4vFIlnmQvLuu+/GmjVr8NBDD+HWW2/F5OQkTj31VAwPx+SfU2kEGW7x9C00rxe+OYkLSbvzud1aqd/Qex9q/V2fQegDX5CpEo89Ta1dzXOA5Qc6L9NFkh5NrXcC7fMldVAqLX/NbWmdJ1HhAPDorfLXLiRbcz6eI4MiFM2dy3C/dV03Iall5fuQbf1dtjQ8frz2LHD77/IFqNODU/fBNOddfMt75e/ON2R4/yeXAK8951+WCqODVr9TP3ZtlYCnmblylRWi2mrmyO3+Xf4+gsVOe6STzeZfJyokNYtIGJJ4LtoDjzytjl7HIsp5dnhh82tLHJj7nIFdUt/zD8n3GReZAAfdPrStf58Yk39aNr+PWfeYWCafe0ChgkIKI59jPzIY7oU9L02TixXSc4YgJxzWKUGLZKCo7Ztvvtny/aqrrkJnZycef/xxvOUtb4m1YRWBY2deJEsB4B1hHdvN7uFsrN9k+x8D3P1Ho4PXfRrnLnSfkzQo7XYhmRuizph8HquqgdM+DHz/YvleXQsctAp4/Dbx5dK0fEvR3C7gjfUiEm/9rVgwdXp3wLL/bgnR9eNg99vs6wEWLPXfNy0rwuj6y+X7dBY46mTDCuv0INuR8xU98Digc4lEaevHqLdHLKIAcOMVwEXfdmx2IPze3qengb/9WqzTh5wgQ3XZabFKrzwy/jlo7WKiTOa4DW3dUnmJTSR5soO1pxBdXtihbaWyA26fdOoos7VcDwb0nVbSoRzrAutn+8uW2/38+ovG9LVOpFLAcB9ww8+BFQcBBxzn3Ia4XHtGBoH6ZtuPpvryXkBC1uN6GF2ef0N9EiCqlBKozIWknf5+eROeM8c9FH18fBzj40anPDAQwlF6thKoQ1G9eCJcZFVeqXoSiDBzG9KobxLfxyfukO8N9hvfUki4dumiqndHzsk71xFmbMEzNbXG58lxsUqm0/IG+twDhpXxredK4u6j3w68+rQMFevphHSmJoH+PUBtJr899hkwhgeMt9xMgzwIVDrT7DRw5VetUd7P3S///ukHYmm1D9tqmlgcAYmQX3GQsax5jjWPZN7bekKWrVefEQvki48A+x1lCKb1T4uQ9ModaSbKQ9tz2xLpzMtNSDr6BxZASXoObcd4DSvlQEx4f0dMFmo9aM7uAx7ovDpYVu0WezchuUchSPCqrwObXgJefkL80p3uO69ZfYIwNWm8NM+UA49r3aMO5UPoYpE019fbIy/Jns+6wBUXjNDBNtlsFhdffDGOP/54HHTQQa7rrV27Fq2trTP/uru7w1ZZ/szrkum9OhbLd6cOzO26LcRbiGfOxyQqdLFIAhLsstchItD8ighzbBqaRTRqmlglx12EJGBY5vY5TI6RnlPx1t8agq17JXDqBfJWqYtUJ9ycye2d4nC/kfhcnx5MRUgO9LqnCpqJaLTVtXubPBiqa/LzCx5wjPV7Yy7waWJMnPfH7UM6MWFO8fKDzxqfA0evJ/TQDhygEBG34bGwOQmVhrbjPnaa1T2jkIMviab/8So7gfoAca35/f8YL7IWi6RJSI4MiHAyT4UZ9JqxD207YbZ41phelM33q1MZYyMiInV+9C+Fd7sYHQK2vhp+ulC/lyPzbk+Muh9Lp1EQp36m9HRkeCG5Zs0aPPfcc7jmmms817vkkkvQ398/82/zZp8ZPmYz9U2SrqauQb6H9ZFUxSsQxQnPxLQFDvCvawTO+iRw+Ft9VoxgKdUF/RsvA+O5IWonIXnOZ4DVHzSmXZy/LH8dXWABMrOOG49Y3UMwMpTr+B06F31ouyuXxHzLesmVBkgHfM1/A9/+B+Cua+XNf/PLztNK6uhWBM3mq6oHDi070GqBTaWAVWdYy0jnrqkHbhDn/f/7frAHo57iw4vpKffgkQGP/XMiMbES8rqLe1gzrEWyZ7N/zsYobX39RYV8n7nyCyEcPIe2E6pfm/nP9nvEa2BkELj3Opmd6+Zf5UYuzMOztuP+wA3W7/ddHywXp+6z7YX+It6xGPjIpcApfyffd22Va+HJO4HL/xXYusG63esvWb9PjKkl1o+T3h1yDQb1QUdK+jPfTAqmYzc8YIjrvGe6OTDVyxJaekoylDq46KKLcMMNN+DOO+/E4sWLPdfNZDJoaWmx/CM5gnQocQjJhcuNz5l6yY6/YBnQ1mmIKs/643hz9/CRzFs3YXR/w03rjDd7e6ohAGhuE99B/Xiecn6+4NRfDgAZDj7vc9blyw6U/d3wvBEhnc0Cv/km8PMvAW+8Kr/pDuyAYe1bup/8HewFfvdfMrz7zD3yFg2IC8C135WITH04ffE+RvS7zp9/IlMu2i0S23NDPXmBSan8l4v+ncDt18g0koCI28E90gnfdrX31HGaJknPr/pqfuCRmT/+QB6UTvhNEbZpnVhqZkRMUteRQrlJXcMWi2SEVDJeuVPt9QShZ7O8YFz1NVt5DuuODRcmAj7JqG0tK64WecO4Kv6GJgb75P70s4yZpy99/cWc/7CpzPVPWdd//UXr98dvB+5xub8cha+KkDT5mDe2Smo2XRj93/eBO/8g5/qFh6zbbcuJsCX7Gb+98qR3XV5tjZvxUe/5zsPkhNVfkt2ef9NTYjBwyqQhGwavM2ECCUlN03DRRRfhuuuuwx133IHly5f7b0TcCe0jqRi1bR+qNk8Dl06Lv19NrQglsxDyKzcKyrtcCCG5TP6+8hQwlLu59VRDXszrAj72H9bf7BHoelS4zoHHAotzw8YbcpHPIwPyEM1OA4/eIhHRl38e+M1l0pnoHVjrPOtMPU/elT99pP4w1gVeyxzgze/JX+f+PwMvPw7L8dWHzO2BTHpHZ46SB2Tub7NPlC5wn7lPxKSdqUl5OA71Aru3ikXlsdvz1wNElDolc3/XJwwh7yVCr/2uWGpuvFK+B47yzjE65P0AUSovqaFtkyhKIpWMUVG4zXSrOSDXxkzbHcrbE1MQhabJdWWu277cddusWMF6HEbLVM7z2IhcK8MOIwtBorb/+H25P+/8g3d9dteVvp2SBQEQkbJ7m9y7Bxwnvzm9eCmLNYgIV7VIZnLPkXQaOOcf89ebHJf7W7+39FzB+x9t9DObFVMK+p0ap2jyMJj9sVXvN3PbJl3aYG9/KiXt3fqa9P8DLkKy3C2Sa9aswW9+8xtcffXVaG5uxvbt27F9+3aMjirkTyJquF0krhdP3tVofGyOcT7OJC7eOCySUdq1dH+JxN75BrDhWflNH6L28nPUNHnzrnEImtGpbwL+7vNiGVy6P7DXoYb/oT70ZB6+ffUZ4O5rJYF1X49YGXTBUFsHnPheY93xEf95yKtqgIXLgMNOyl9mfohomjGLiV386sd21TuBv7/MKmbN9O0y/HvsjuwAcMuvgJ9+EXjpceM3N1/RTQ4iEpDjqKcm+u23nNcxo4sCv+uoZ7NYdFVSJAVZDsTrH+fmI5nkjC1B2mpuh/lY/uyLwGO3OZfnlatTZ8cmtSTVN14B/Pjz8kLz0mP5D3yv4zQ1Dfzy63LPDeyW+gLtu2ldP3cBL/QhXbsF0Y7u3mGe4Uu3wOuiZ26X9DtuWCy0KRml6O1xbr8+ZasXerCieaavrr3y13vxERk5+fVaEUt6f9G5xJjVbMur3nV5YmrnPdcDP/ycnM+HbgL+9BPvl0MVdOGr2o6xEXmB9lrHTN7wenk4SQYSkpdffjn6+/tx0kknYeHChTP//vd//zep9lUO7Z3yoNTnmrYTami7yjpkHen689jYya8wKoUY2s7UG8EkeseqiyUv/1LdImC28DqxYCnw//4JOPsfxTqsWzv14RD7kJ45mGbGTyglVuP9jhafUUA6G788h4ecINfM2/6f+HiaMc8D/sQdIgJTKXFxsJA75+kqEdjnfgbY94j8um75lfG5ps66bHIcWPe4CGTzcLVb52oXDfVNIobrG40hv7FhteS/gLeA2L1NxMNd14pVOgihLZIhr2uzT5s9p19SqJb90E3ADz4HbN8oIvLu/7Mu18970JyKYyPAby8Dfv1N/+HedaaXlBuvkEhgXUxOT3q7AJiHJ3/+71Lfa89612fBy9qpuM9mYWcWiGZ2bZVj+9Kj8v2kcyTIDzD6C/0FauFyYJFt+th3XGhYKXdvs+aE7euR/sjpOGuavx/rlvXyN2Ma2aqucX+e9e8UN5zJcelr5ywQMQmIGJ4Yy08qn98w78WP3ybn/Y7fAw/8RbJp3PcnY582vuDej4wOiwuPnj5JJ+gIQBC3jVQqP+DGyZe13C2SmqY5/vvQhz6UUPMqiKY2ic6tchEnsVw8ZmfeoJv6JP52wjF4x1xxHD6SKe9y/DjUlv90ZhYdhVvj+HfJXz1JuR/6A+KVJ2UIV2U2ktqMMWyuWxiy04ZV0Smv5n5HG5HegFhC9zva6OQHe+U0bHrJeOh37ZV/7dkP65wFwFFvl8/N7cCRp+TXPTkm1tKbrgKu+xHw4qPO+zXY53yOdZG+8ijgze8G/n6tiGEAOPJkYz2nCHb7Q+F/1pgEokNd5vRMfnM821GySIYItHjhIeC5B6PXHQeq1s4H/iIPwD98V1K4KJfnsx9bTZYps1C042Rl6usxfMzcxIIuLp0e9o/+zbttZtx2I5t1PoaOeRJN/pVOL+a7tgK/+g/xb9RpmWNkkHjpUfGNfPVp+d61QpavPNJYv2sF8I4PSp5eQHytdfxGOLwE1FCfEbC3cJl12Vl/LxkynPpIXch2LJa+p7ld3Hiy05Kp4cef97YAeln8ze4x201lPHU3cOfv5UXhjz8Qn22n8/GXn4oLj54/NyxBI/pVKD0dybm2ywb7DDFFrd++DNIBmFmwzBrcAyCv3V43hB5F7dsutdVcWXkUcNDxUlBDC9CQE5J2n0cnDn0zcMG/eUdpm2k05Qi76uuG9e3g443fDzvJmvDb3IFX1+Q/ZPQ5wfc/RoRWTQZYdbp1nVQKeOeHgQ9cIt9HBuQBZx5CeudH8js9p3O+YCnwvn8B3n8JsNfB+ctHBoH/+54MYW14Lt9nUhfok+POD/i+nJA88Djg6FOtVt8TzjLEuJOQ1IfodTRNrAqA8y2j584EgqcVimOI2s74qETh/u3XPhZXzeVzkZkcd7Zo6QFseUPbDr+ZeWO98fmO/3XPHepmnbdfD2a2bRCx8tCNLlajgHkWndAnLdDZtE4C65zEttk6ODZi5JIFJNPDr/4jf5s5C4wRlVeeAv78U+MY6ZkejjP5N+tuO3qC8OE+Y5mfoWJkUPqM5x/Mz5zQv1v2s6EF2PdI67KOxeIW8/a/y69DnwJXf+lNpaRPNWOet9tOn0MfoB9vfSpIIN8a/eRdhvDt3WEEG5p54xX562dRdLt8J8YUXDdmj5KkkCwFvHztdMzCJuxDLIpV03PblLz9mqmpzR/6zbuvPMr0mls4TtJVkv/x79fKFIy6VU5phoF0zoqsmGap2pbcXB+iam4Hzvi4DBu/6QzrNIV2i6P53J/zGVn+zg8Dp30IOPFs4B//x7BS2NFndNADefRhsJPOkQAir3QUZrqWy5Dz4n2A1R/IX+6VDqO53Zjt54WHrfvz6jMSjAPkv5gAcpyX5SLLnVLLOKXv2LXV3W/NHLSgkjjZgmJCb5XfdMxDrPr1/8gtEoV+x++N4UVzW+PSkRNjkibGLL5U0qHYhzzNEcU6+nCd47577MCW9dbvv73M+Lx7m2GlDCMkH79d7oMHbnAO3rJPfeqFij/tS49JINjAHrFymS2VfTutbh8jgzJX9U8vEeF235/zyzz6VOknuvaSl2E7eiDh4n0kFc87LjSeM/rLmDnfpEp/9+wDwC2/Bn79DevvuuDtXOxcTiol/ax9yF73pe00uV8tXGFdxyu3sePQt6ZmSX/6XuPzTluQVRwBbOOj8lKVxKQjJTi0HWlmGxKR+UukE3R6aHpRlBk3UvEbP8I2NZU2dRapiLuc2ylzHki9jjCkUu7nx55aSLc67XukBLrse7ix7O0XiOXiVJtQMw/jLVkZrG01tSJmpyZEtOhDPh2LpZOvzViH21U6rANXAU3tMnxlf8DodK0wxGUqLUJ32wbgrj9IZ7tlPXDMannY6rj5VukPnafuElHa3C7lvONCY3h62QEicDa9JNfJ1lcNS+74qDxQJ8et/kh9OyXgwM21xE4SPpLmB7tu2dN9ut54RRLid+8r7Z6ZiSOmm/KWX4u7xMtPAB/6svyWnfb3jbNHOuuWnBUHy/YbX5D2ToxZ/ecAwG0uakCGWp0skNlpuYZ++XX5/sBfgAOOlc/LDwTes0bcNR6/3T0xP2CdQeS238nfukZDQO7eFkAE+Kz3zL2GZVxnzw7jJdFuERsZMFxXbvm1ddnf/SuAlBGYAkjE8zrTvdPQLD7FekqeQ06wlqG775itbSr3up44fHxURLg9i4JfcGddo7Pon2N6WZ7XZV3Wu8N0rSugae55ak/5O5mNzDzUDeS/RJoFalW1z3XgdT/3uS8e6i+OQSghaJEsJrV10pl4znGdw3zxWKZZ8jqFUUVW0oRsnPlYOBWxYKm7VU61HemQbUt7vJvV1uVbbvc+ND9aGpDh7rP/UVIzxUl9k/x99RkRjZkGmY6yvlGuQ/NLjWqHtXQ/eQAsd5nh6qDjjTxxh7/VKoAfvknExx9/YDz43vIed0Gnu0uMj8qw+XU/lGHuG68wHsj7HA6c82nDp1SPDO3fDfzon4HvXCTRnIA8KKprRaAMeAgPO0lEbVsskkMyxG3mD98BfnKJ7HfU6FM7unDJs/RqcLw/pqck3dPVLhH0Kw4WUadb4R+7zRClmubc/hcekuFfIJck2sEydPV/Wn0ne3uA+/8in/Vro61D/totkgO75brXNOeyj32HvJAAIij3bIeSUPdb5dn7838z5wjUz7vb/aPzjgvF0rhgqbXfr2uyrpdpgGffqlsGR4cMq6DKvW4eeTH7LupC0t632XHLuWjuq+2uOz2bxd9aNWn9tMkloK4xlxg9BbR2iPvPQW/K38Z+zZtfpnWrdRiyHtHuvTucZ7JRovQe6hSSZYkmnWV9U/7cnPZrzEvYxIXeCTW3y1/X+UL9fEYcmLfIvT75kr+8qto/onqmSRpQ7XSMQt6sXhatVAq44BKrD6M9R6MfetLwFQ7+iSo05B4663NDkPscJteRfkz9jq0bqRTw7k85v9gs2gs4/aOy/NC3yD99eNuMbkmYv9S9no5Fzi9e/buNoVA9zVJbThTv2iaX3YuP5Au56SlDyL/+kn+Cb93tIKxF0m27iTEZztTZ+Lxh3TO7RAz3i4C761qPagOkBHrlSe8hYLfdfPw255yhOg25a0q39D90I/D03fL55l8CP/2CVYy8/pL4h177XfmuXwt2K37PZuB/v408qqpzvs4whKTdIvmrbwB/+rEEWji5zux7hFg3dZ+9503Js7M5y/bmlx0sXraD1L/bmgLJKajOnCNQt4DN8Xj5PeoUw/Jqp952L7V3mm5dhxNY12iIwj/9WK55lREYc5tfesT4rO+fn5Cc2+X8uz3V2lv/n/X7S49ag4ycePlJuSfGRwzB2tgi1th/+C+xstfUynd737P5Zeu1Ynd1ePgm77rdUEnkHobS05EUkmWJpoloc/RrM5GC3Dztne43sRt1DQ7BMj60zgM6u91zMOYNbSngJBr8Or2ULZK7vsl11dwGLmWEwM9fsr7R8PPr7A4uCFd/UHwaT/9IuPbpfpJ64mb9oetE0GOQSlkT22fq5V/HItnvFQdLsE1Tm3Tund3W7fXO3O5mYCZdlT9rkJm2DmOf9HRGu7YA0NytzPpc6nf8L3DlpdZAl2zWaj1b/7QMnbolOh7sk/QxT93t/BBxSjI8PQXc80frbxtfMD6f8dH8bZ57QP7a65ialIT2v73M3YrTu0PE3LP3A3/5GXDFV6zLLRG8Lg9Cs9/ewSeIFdmMHrRmzj2q+6W9+IgcU93ncXJCArR0JsaMWXf8xInOqtONIdtWk0XSLKr18/jqs4brwPHvEh/DE882XoT1YJQbrwR2bJbtrvuBTEn6h+8Af/uNtW7zOdi1FfjFvwPX5vYnO20Imze/x8jrqlskd28zAkoaWgzfRj0ljo6eGscJe//2NpMQczp9qZQxrP76i8Cz90JJnfSZxNa6JyQYanrKGCJvdXFH0Vn9frEKfuAL1t/bbX3Qm99jDUAEjOHo3h554TKn69q1VaZrfeIOuab1FyO9H6lrsL7g6y/jLXPlpWF6yhrs5CT8wwhCzcN1IxKlpyTpI1mOBL043fKSeVFdYxNxCnWmUs6pKxYuF788++w5YcWaZWjbJhrlR+tPmXp5WJlzcum+gprJOTtTr56f0A0VH7uFyyS/5JwFammGzDQ0y5zf1TXhZm3o3kesXfqx8BJtYWhqMx7SH74052hfDcChrXsdavWx07dzEv4tcw0RNn8JcObfy5SPdt5rmk2j1WSRBJynHDvl76wPjoE90qbufeXa+MtPJbr7wi+JQNEtZrV1+dHxAPDY3yQa/47/BU59f/5yJ/+tP/3YKhwB42F4zGoR4Ce/T6Lg3/we8Q/cst45GObVZ4xsALdfA2x5BXjPRcZD/qm7pW2ANf2RmbuvFbG1eB/go1+D471vvleOfYcIviNOBp64XRLu69OPmq1lu7dap+ecGBM/SLvlsH8XcG/ONzTTIJG8Lz/pnUvSnN+0pV3uq+kp4KGbgePeYZ1CcHTQsPYuWJY/KrDqdLHUDuyRlDrrHrfOCb3+KRHp+r1rPjx6uVtflZe1pvacj18aOOpk4MmcVXbTS8Cjt1rT1DS2yEvD7f8rwTQP32wMu863vXSZyZiC8054d06A6h2gS79tHrEZ2OPeF09PASNDYpAwW+rGR4Dff1uuR/1a9TNWNM+RoEA7Zou73uYT3i0+0/rwr37uX3hI/EHXPSb36D6HG9czYP3sFntw4tnSTx12klgbd2yyXlu68N//mFz6Mk3Esv6ioYqWDfiMU3yul6CPJIVkOVKoPHKWOr0W+lzYZlFaXRtMADkV7XcjOYpLG1XVhpiK83iquhLoVo+wQT2ebaiS4+3kh7bPEcC91xvf3WarAcK9+O5/tAgZs9uFWzlHnSIPWz0Vh46TkLQL7r0OkZx485dKQMqrz8iQVZvp4aFbJndtEYuGk6/aISdYAxUAIyDgjVeMKOQNz1tzc778hFhaJ8atQ47m6dBUr3M9qGTOfKC23hoMoI8K6C4B+n717RTLnm7d1jFHTT97n/y94WcixA8+3vqgdeOZ3HbrHnOOjh8dMkTkGR83rIbptJFn1I0Nz1m/v/CQpGMx86cfGylmMnXAyefLv8Feubauv9y6/oJlErCRzbklpKtkf/t2Ag/eIAJgqckv13yMnK612jrx5b37/+RY2IMzAOCmK0VM7tku2RP0FzJz33T7NUZqsMYWudd1N4qdb+Qn30/l2v2ef5DvGxZLipyFy31GDsz3hq0vc+vajnyb4UqxZ4e13fpMMMesFt/j3h4RX4Acy/lLjfm8zdHmHYvyUwP5Yc5QMdNmTV5APvZ18Xu+7ofG8L85EGbzy87Tqeocs9r594ZmyVELGC86ZlcHPeituV2s3EN9cp6DCsmsBqQCPFsKMZtbQlBIliVFEJJedQa5rufMlw6+qc1/w+Y5zuuoiC/7zeb23WyR9GuPV0S2jmrUr1u71Dd0X9TUKqLKae7g1rlWa5KXkAyjJI94m0zPaJ6ezW0fa2qB966Rtvzsi4bwrW825g52K8M8l/Cp7xcxediJ1nV0i8TYsDUi3F6m3RXj5l8Ci/e2iqidW6xCtHeH5O0DRGDqQ4Xm4XN9zmMvtKwRKXzOZ+TBeNNV8j3T4Oz6MH+p3EN//AFw8Q+sItvpnO/YJP+CzK+ss/llq4AGDOHXsdiaacAJ+/C6XbTbRSRgFSO1phEOPUr/U/8plrJdW0V4tcyR426uqrXDsJRtfN45oA1wv/4X7S1/nUQkYE2Q/pN/Az7+DWnbuOnlbfc2cXUAjFEhe1SymRW2YJtVp8tvC5b593l6xPmyA2wLXPqrfY8E3nhV/FZ7Nluv06tzx9d8vegTF8zrEoGmC0kzLXPVhWTrXBkhOPA4h4W5Ntc3GeJtz3YRe25W6YOPF/Fvzrepkg1Ff5Ewp3vSRz5a5koZQ33i4pA35aRf/5jU0HbpQR/JciTQrC+xVhy9iKpqeehm6v2b5+Zzkze0rYBZLFTVWJ3R9ePpV5SSgA14SyVhkQTk+Dq9QadS1odZ3EPb6SqJArc8uH0ObKZehqh0apyyGHiUUd8k6ZI6FlstNzW1xgPcHNhx5ifEKvHunOUnb2pIyBCw2Urx/IMiDPQHj1kg6Ynd+3cZ1jzAWdTZGR8zrr+6Rmug0Zvf7Xx9d5l8l3Vr7vS0BBs4WRDtHHky8NGvS1L5k9/nva7uizk5YQxL60FNduHuhN2txmuGGid/6FqHHLv1TVLusgPkOnPars7mYuOUWHq/o92vf7v/rh+6a8KEyTVmegrYk3Or0P03G1udA81O/0j+saquEUGrkqf2w18R30O93T4j20ilgGNOlc9bNxjHJzvtHXC2cLm4Lbzr49bfu1YEeyl+70XAm94FvO28/GXm55s5cPPmq4x70r7dMau9Rbob+rnYtcUwKOguMK1zjREBfcagwPg8MycnjOAz/aWjDKGQLEcK+ZbT1GoESJix5PkLKVjTVT4WMRfyrFMOy+zRx7UZ8anR02foG6mmlQDyoyPjIJFhilyZbpHr5kj4vOMfoD2qbVdZ7+BcWo7aOvcAAT+qa/N9dHVhuTUnfk54N7D3YTLbhu50X1MLnPdZm+Ut5ZyU+oSz8nNc6ulo9DQ0Ol7R0Dp6HbV1IhzMgQdtHXJ+zMN/qbQEt+jow+KvPCnBBiosXCEPyc5uY65mwLCqzl0oYhuQaeK2bQR++TWZl3x81LA6tbtY+cy86QxJD2V+UQDENaF1rvEgn7vQSL1jRvn+sK1n9sXUh8TteAnhdNoaQNTaAXzoK+4Bg3rqqXGbO0lPrt7GtlwzU87D1EFzCdupb5IXKakEM8fDaa5mneb2XHCPBjycC/hxmjHKjD7V4d6HGf3LKefLzFhBaJ8vs+44DW2bh6/NonvD88ZLzJwF1v5NNSjLjv5iuHubzBf/1N3Gy1jrPCMDxLrHrNcUoNZVmvuyPdslCEt/8dSykknghYdFyJsj4e2MjcjLyhN3ek8bWSQ4tF2OFNJHon2+WGy8hoqjNGfOfHnrdOroUynnffWbZcfrpxqbY7c5qrOpTW5Yp84NEEtmc7v7TBpwaa8XQYNtTFWFWgaIr93T98iKLV5+P74mWigHYfnRtZeIuYYW5zKVZhpy+G3uQvF11F8Y9Gkq7eUt2ltSFOkRzEN9zudmwVLxwzRHX+uWBPtwvFdCbB3dwjLjT5qWQKI920UwtrRbg2rSaRGcJ50jFsgdm8QX0+wrdvSpxlzRtXVWX9nqWkNAA5LRYclKyd94+EmSy7ChRVw0Fi4XH9Zbf2OIRz3/JmBcO+ZAKDuNLcDZn5b72zxUevL5uRRBae9zq+pnai/i8JOM4dfd24z7fu9DjTmm/Xze9joUuCfnA7h4L+mrLvi8WK/uvBYY3GP0B8/eB6w8wmqRBIy8mM2mF7a5C61D5ul0dCHphp4vs67BOdDr4OOlLfddL+fT6cX+8LdK0Mt+RxnHLJUCPvgl+d38AlZVJYKrodll5hk7Pve1W/9Y3yQWzYf+CrzjQ8bIzsnvE99Uu7B1c0syC9XJccOHOJUS16qmNqmrf7f0mR22dHR+3V8qZazz1yvkPtj0ktzjNRmg3/Sy6Za2a+cb1iwMmbr8Oc2LDIVkOdE+XzotL8frJHAUczEaswMLUfsGDqJWKSAHVp+e+iYRCm4J4lMAWua5C8maGoe2+ZCkRdKN7n2Bcz8DTE3l5+kL8oKgqCOt58fDz1T3S3NcrnKcTJYYnaX750RzDvv+mmnrkCHGv15hTF8JWB+K85eI2NIFAiBRnmMj1sheIJhF0jzEuvehAA41/C0t5yR33+lTyW1+WfzC9LpO+7CMIuhCct8jjOHpVFpyeZpfplIpGWbcvglYsMRq5VmwVISk21SJupVNxS94zgIRS/27xNLX5CBYnAiTmQCQa/wDX5TZlibGjPO18ihDSPq5dZiXV+X6BD29VNde4jO77AAjjdG13xNLqxk9yb5+rADgTadLLssVB0uw1+RELpdrqD1Vo7beWUjufwxw62/l8+svWV8ydE58r/PohpPfaecSOWfTU2pCUmWf37NGAm7M1DfK0PxRJ1vbduhb5BzbM4Skq5yH7N1Sw81blLuuq6TMh26UF7dzPyMvJi88LKmjnKY31rL5z8eezVZjiVPGCfPMVmaevsc6cqYHapYQFJLlRFOregcMJNsxhU1c7VxY+NXzREfKYaUAdXrOe+5TZkNL8EMRWpCrWOhc1tE0oHs/OKrAhmZgqFeG8HznnFUd2ra1SWVu4pBV5dG9ry24yEc8tDhYht78HkmI3Ngq6VwOehPw5J3GS8jubZJf0Lz+vdepWSR1IeklcM3nUbfQLFgiFpPBPYaIrKqWlCa7TA+spfvLw7ImI35kTa1Slz6dJCAPWbPfpY49yMZOkHnpq6rFgtXXI36gqvMZK+eydWhDxyIZutWtfy1zJDho9DwRGn6TFpj7Aru1qKFZ0h7Zr1W3OdvNrkHNc4BPXuZw7wftB9PuViz7OXGz7FXXSEqem64SP+DnH8xfR3VyB7286pr8WWxU7ns3lh8o4tAcqKVbEtNVsm9moVXXkH9s3IRk2zzguHfKsLk+AxYAnP+vxufDThQhuXmdiPGr/1Osl6ND8hJm5pZfyzGsqpEXwnd9TH43Z8qw09Aix8vJjxfIfyYt3te9rCJBH0kSjrBTCDoR2CpnWt/eOc34SKoXASD/DdZ1O5eC2zpzwz6lYJH0QdPgnl8uLQ/fQFNM+hD4pSPs0HYqv/hMPXDmJ2VZXaO/Nd8pyKJ1rgQynH2RHJ9MPXDhv1sDDszWBt1iYBYVrz0nkd523sj5fDm+IDq8FOmCIJW2TjXZOhf4xDeBji7rnMeplATtHHdabtuUemaB5Qe5B3ocf6ZDO32oqRU/Pq/gEfOyU/4OOGiVWtlumIXoAcfKcTvsRAm08cN8zbn5UqdSht8gYJxje/S03YfP7wVSZdpcPVdnXpscfvNyoWlNYoTL7grlVr/itWMOvDz1/dbjU12bf1/XZgyfX8C7/3jTGTKHuR54tvJIYKHp2DY0G64nQ31GbstNthEIwBDi05MifHdvE4uzfp+/9yLJW2rOnbk4NxLjZpE0+2rXZPwTvxcBWiRnNV43aYi3Q3MSbHPHEFkMRXH4c1vfT7zYfnOK3A2CPid24NlgEniX821DoaP+bUPbfjhaJCO05bjTJIilts7d/1WnqsrwP9RpaDa9oOT+1mTE4mC3hnz4UrE+pVK56QzvlYeIPlR+4tkSNZ2dBn7/HSNQ5+hT3dvkNLQNWIcW9ztGHqaplPUha59iNDXznz/1TeJuYH9gfvBL1gjZoOemqtp9nuH2+Ya19JATnNdxwq0JK48U6zHgPM+yKjOBLA689dx8S95xp4no0N0CgrojKQWX1YilTcW6m/J4ebDPLOPXLiXLol1I+uzP3IUiutw4cJXMALRo7/zz6Fa22ZKq4up06FvEFaQmg7z2t86ToXqzW5P95cLpZeOVp+TFcnpSRjSW7i8vGc3txhSj3ftKXlr71Iw6ug92XSNw1ieLY3zwgUJy1pHgRdaeywHZ3BZv5HgUHelqkQx4HMIGvdgJrHuLZZFUqD+kd0D+egEtknH6SAKSqDrI7E5HvE2G0+65TgSTOTrZLuoaWqxDUm3z5Pc5C+TBeNvvrGXf/X8S4NDbY4hIQHzV7MmVZ96JHCySgLVdK48yRGMKImiHBxz82FLq1l1NE4vgppdkuzM+KlYTe5qVoNdwTa1zRDwgPqq3/laGGwPh0oaFy0W4V1WL/55bvW783b8CG180ksE7UVsns7rszonGjsXA/GUynelffyE+oVFGXTxx6YdVh7YBESiL9hbRO+7gR2kvV6Xvtzffb/8bmuXlwi0PZXsn8LH/cJ45zelYaVq+S42XK4CO7jNpb2/rPPEXNt/r9uNgDrabv1SGyje/bPQ9cxca5e53lMwCVdckqZOA3Aw7wzLbztP3AseuFvcJPYr8jI8Z1ssSg0KSqFNdYzxE/DqcIATuZDWXzwgpbqDmB6SUKqhAQ9tK27msk0T6qHld7kEZYfJ+epXhuo7L73raDpUHiU77fHn792tHo0lIvvsfDIvhgqXuFpY//9Rq5dOHqvQZa4zKbH9htUiaI0j3PsQkFlLy4HVyT7AP/7sJg1Qa0KZFoGazIkj1eaCjkkqJsHPyWZu7EHjfP8dTj16XPitLmGtvwTK1/X7nh4AH/wrsf6y8hFRViY/pR74avE7Aua1O58orT6QZLyGZSknGBC0L/PSL7pYxIHf9hegH3UZeUgrr6Lil+HEVt7YX2IXLgK2vedfhhj5j1q1XG7/Z69SDixpagFMvAH79TalPd0GYY7ofa+uAD/67nBdNMxK0/2at+D0DwAM3SJ8w1CdD4R2L4N7JFRcKSRKOUhnarq1ztngFij72SUGioyJCAg9t29bP1MvQipvjtQp+CdYTSWiveA5VimydJ8Ex5iE7VeHstJouWNJpYDpA3lBHbA+7OlPUp3lmkuPPBJ5/yLkI+1CxPv9wc7t1+kEdi0XS9MLTOk9S69Q3OsxX7IVNmGoOQ6Nmy755CkjH4kJc89W13omvjZUR20xeSVr/OxZLSpe4sJ/z9k7p63Zvkyh0Tx/KVL4oUxlxSaWBD35RLG+NrWJNPeEsY/mcBWoJ7+3td/pubmuQNroW4XON6C8vymXa2jszoYWpHrtLwXAuwKihWV6sdReOh2+W3+3uUzP+zil5AXnoRkNE6ug5Iw88LvnI/ggw2IaEI85OOUxZC5dL5233eQuTJNvNGmkvKwmLpH39xtbk0zuZBXFc59GrGMsDQqG+mloZ7rEEhahaJJ2GtnMdfpDoU9c6bOXPW+i8XlNbfpoO+1SMgAxzd+3lXL6Tm4ZdQCzdTwKEVL0H7LlZ3c5/oOsixDWvKhqUi45goQfUglsSx+W8pCDiRB8Raplj8tlUHNpW9cWub5K0RLo1dd8jjGV+/sVeqFxPod2LUg6HwcXlKUiZZo47PX+VsWFrdLr+WZ9XvdlmQe3wmC3JLTn+tg3yd6bvKE0lSSE527APWyVWT5xlByxLg3SqTpHWTg9fP4OGagemZJFUK8px/foma2BHWPwsjoEtfREJM7SdSlmFe5RmTicoJI89TZzlT/m7/HXt08gdszp/neGB/N/yMJ1PV8GjqiTtm8XwCAhjkVSuV/V6ibBOmGwLSZBy+WK+nauqxRLtJ3zDWCTjJIxF0isgyLcuhyH/KCnq7O1tagHO+1z+et+7WFInvfqMkaVBH4I3D8XPW5SfY9SMeSpIM3rqqhKM1DbDoe3ZRnWtCBLVFB+hiXCTehUVZJlyoT5RwPbZbixlmIcyErZIBhKRXutp3utYhKZHOYF2xauckG4Qqu30W8c8tB0Ve/vrGoBzL3Zet75JAj0ev12+73O4zKtr5vC32ivIL8c8NVuQ4TknVC2SSRPkhSIul94k9lV1Bhc3n1A3VNvq9tKYd45j2He3NtU1+I+iVLkIX3ORQe7Pmowp8l/hGgn8smP7rkFmS9Ky8hzo3SEz6EyMAS8+Iv/0dFzzcz6RZgvuqe/33z89321NRizCb7xiLNNnPirBiG2AQnL2kUqFm7w+TD0zRO3pgypJj/pmLJIB6nQbsrG/6CbhIwkYPoFusyw41uOxLEgwjWd74xr2juGlI0qwTVxD23YRpsKxp0li8oPelJvT+3Myy8o+h8lyz3s1V5fFgqwQtBAk3D6OU+z6IuZWfYjj6F+owjpuxy7CC4aq+OnslojcoV612XqiHh/Ly1vC1siGlvyk2eb2ZxrEj9criAcIJiTbO2W2GADOPpIarNd5xKHt4X4JhNPdVZaslP76hp8b62zJBfLowTXm3LDzl/j3P+deDNz8KxndeP5BQ0g2tpqm0KSQJGWFzwVrydEVsaNKZJg8wNC2qu9PSwLDCym4RyPGUbbn8gJ1Skk/yIyKnPcpLotkVTUCd+R1DdYgjEV7yT8V9KrMVkilIUKfQpVEp8J+LtpLXloCC/QAQjJWX2zb9/pcypnmtvyZWEIX6kJ1jamekNM+BiEJq3Mgf1rTb23zrFZ11/ID3J92v2unbS2jchGNHU7TndqTzk9PSrYHPQ3XMe+QmXCOeJskSG+d63yd6Vbt7n0l2AkAtm8wlp98vuHKUJo6kkKycnG5IlvnyduXn7hJpYy0GIX2v/HCsVNz6ETMw0yu0yKayupaoTasmFi+uABoPkPbsaFYvuX6CNuhR9gXL4tkfZNESqtQVe3fjHmLrNMPxkHLHDmncfjP2oc5w5SXSslsKGEtvCkEEA2qglNlHdtKrXODW1Mt5SlmewhXeMTNk3BfCFCOsoXctCzIc8R+/TS3iWibyGU80GC9PqcCuBWoUlsnQU/mWa0OO9HYj6ZW4J0fls+dS/zPg3kkqbnd+HzgcaZ0e6WpJEtIAZCC0N4p/ipusxm0zJGIaBXRVFMbrSPWScIi6Vfm5ITxWaUDU/ZNK+CN7mZJjStPZNKWDFXSVdEOq5dFsjHA3PUqFsm6Bnd/sMDk6tLTv2Tq1SySfm2M6mrQsdiYySkUNotkU7u7W4dy81RcH2zrRL289Skng6DqShKlbSlbPXG5EqTgkhDcbWVze/xXC22R1K3i821R0eZ9ng5oBVY9Xud82jTsDPcsDl5l6r+b++3F+0ii+K4V1kCb0tSRFJIVR1Mb0LU8YN65IuJ083kJJUeDpMP6Lbk3Pq8ZT0JZa4KuH7Jn0DSPadsUhWQUvWl/oITZj/pG61zIdhpa5G/rXKgfWI/rxcmCFqTZVdVq+xlVBIQpR3U7vf01GTketW7W+ASS1pvbYD6Oza05X1GfIdLoFbt/D7O7KbubQJg2uC1Kcr8jlNOxON/Fx+meyNsXRaGvnPTefO6cTp7tt6Sed/VN1qk8nVJ8AYovEKY21zcBH/2a5Il1XLe0oJAkpYkuIoKiKmjqc1NThcnZ6JR2yGhA8PLC4mZJ1fI+uBDg6WkW3O2d3nMP5+HW6ae805jMmS+O642taue1rtH78DsOxQY4XypCMrLlJ+z2Abebv0Suf99rKIa6nLZ3tIo6ZVewfVe2iDlV69HuvKkkFZizIPj5dlq9tk6urSDW8SCVxOWjrL8AtM5VEHyq1lXbwlD5PD2CIPX+I8ncvOaXYafZpPxwu/wz9fGM+BUA+kiS0qKhWYa6XC0lfgQUBmHKmrdIhkr0WQcsmxTxjbG6RiJCG3LDhJGNSqZ9qW8yZttJV8U0VOZQhjmKOZUy/Fe9rNANzeIH2dhijay3p1yJ6stbsKChmQoT2M7u+uG2bkCrv5kFS4Htr3tvr5wSyrassUXcb3ZtsyXW92mTXz11DeqpfAB5sdLTtTgtc52ZyqEN7Z1ynZvLijXIyMkSG7Fz8HOPsC9XHlBQXNG8mlPfoP9Ukwn3khDk3lu0t8yJ3diae6aM+27iWNfUhPdyoLjPFw8oJEnpkYl5BoWwPoOufj2p4rgGzF1omr/ZYZ/mL5XOyDV4KAJROjC3Tj8v6W+bh6+cR/1zzX5JpvWqa2xC0mloO8B+pVV9zYrQ2Ycd+Q91Xj22qa5RuP5Uj6ON+iYZqUilrHOcAzKLyOiwPMirqiW/X5B2AyFdWRy2aZvnLiQdh4FDHg9VnHxDww7lO/6utHGIChVRGdrWaZkLDOyOt/5USqZE9VvHTDot+ShVRt5KUzta4NA2KX06u42UCgAS9d+yENODJS7Msx84HYJ02mHu8ZiIIxdkfqEedYQtMi1DTQuX51sQY7FIFrBXd63Kx5fQvDjUPqfCv3ypbJYnbLz8Bk3LvKLWa2qBxXvLcL2bkA1Sr15fKIIOd9utxCHK8CJv5CXua9jnegy6adANg1yrqjPEhG2XX1M6FokFesEySRUU1FpKiyQhIQniF6Wa/qfU6eyWoa7RIbGuhLKARt1vF+uhY1+mOjypOf9sryMKMznXFHzFgtSZShfYOuBSWToFZL3OrWm7TIN3eiPfQAn1ZgkK11zKXm9Yc6p9cdp9NRW3hMY265SVKv56gX0kFUVXHNfZnAWyP+aoYr3syHNI+J0L3x98fg9AXFkq4sDv/NY1Gp/1hOW+11BpikcztEiS8sPzGRqnb1HE7esb/ddxI1MvvmDzumQ4pmORbYUCd56BHxwuWJqtIPSiYPfDU32Iu5aXUls/6X7fURC7rJt3DSo2zv5wtrgcRN3BkJZoz9V8hKmKZTZTZ/XRTavYWfz8A1XWT+gx3NgCdC52mC63wMIkaHR7eyc8N8jkgh11P/pGh+FhL3GpNAFFyGPUMieX/svvxTsAKdcvJQOFJJllONxood9YI960ceQTrKqW4Rg364g+bOUZSR4S17mug1ph4mhMCCxW1Bi6urRqAuooO6xwnIMI4nQVsHCZ+2qqIi7OSQdUBfnMunHUqdh+8zBwdQITEDieuqBiNCJeRSv7V/u0L10lAq+hOfj88E1twFyXNDqAvFSnUpI5omOxdwo3J+Z1ScJvJwEalXSVpNdzy9McihhFaUJQSJLZRYn6kMSOrvE6u8ViOcchEW6cRsugx9U+hZmOVzqLoA+ctg5JY+OGyuweUWbTsDN/qXpZZsyzWKjodb+pOu37ajmueUrSqQDkXTzKM6UoOUna9jOGe9avfek08tvmJ4Zs16PTbF+Bmx6zaHQUfhGGSlvniZ+pHyrX6ZwFpkC4IC9FfnXntklXyQt00DKqqqXviG3iAJe2GT/GWUGMZcUHhSQpLZQ6hYAKKWxHXQ6+K9U1YrHMG76KA5fj7Ljbth/tEdLzl4jlwCnPWnunRC8GDW5obvcepnKySDa1W9dRTTJuL89OVbV/yionq3FtXb4Pmx+NLfk5B4MOp3ptl4ItEh7ApGlmEC/Br6gjC55KKZ1W05FZc/oo0zXcOs/lPMVpnQ9h9e9YlH/f+G7q56aStNW9EIR4izb7oUfdPfMLauTzob5qsWCwDSkN2jokZUbQh6odcyfY1gmMDlotPnHiYLixoklU3tSkCJiJsRjnYVbpKCOaJKNsbhcKtXXyz2m4vKkNcMn648o8u8+oUxscrFTtHcBQr/X36lpgUiH3m6f4Cfnwrcl4PLh9hKtSPSGfPPVN1ryK5uMTR9L12joJPPANaAmzL04WScUXrbTNr9a3qqDHwsMiGWZXq6rFUqqa/9KvbPuymlrxSVTyKwxZZzwbWAmV3iiO+p0skkHq9VuhNJUkhSQpDZrb4xF8lqnX2qLNCVxb75KPLgBmy1HZDbtH8JE0d6SR8s85UNegFsik6iNZk1EUkl6WPYX1nH7WPGbl8Do+eQ+qOK3uDr81tgCDvdao07DogU95AWRqTXEt02sbVQtobZ281FbXqlWenVYrd6YdpjJb53nMZhPkfMYgZi3LbMudRhFiE4Yx9w1ByBPHcbhY5P4mNrRdmlBIkvIj0enbTLTOBarS7kmy/UySSQZWFyJoO0gd9sPu5nsYh5hWbZdZPKQ96nULqqhrlOHqgT258mKwxNnxDATzqK+pBejrcV7V/lnZv9GjbS1z5cXKN6gr7gvTTSAGPBdBfCT1F1qLSHTZr7pGEQ3KgtJUZ00mIZcU9Sb44no6Y+pnA2tgVZcIheuwrsH6ElnfJJ+DWBPdMJfhG+xpOwhV1fKCmXV4ySzGRBgK0EeSzC7itPql0/IAjWummFhfTAusJIO2PY7O2BVlJWn66LEDbmleWufGvB9OU7nZHxY+lrWZZWmP+YMjWrOcAgbSaZl60y84KUxC8thxGtpO6FFXVa0WnKJjblpem9yuV5+DGuewcVKz7MRVZNCAPC9SKat/aV29+HIvXBbhGOhuCgHOXx4OgW4di8R67RTwVQLQIklmB6mUvPkFSV6eNI5z3M5WbPtmic4u0n6rDm27WoVSAR5cCvvoaJkI4rAWpv4Qx14/Vq1zc/69bsOvYYn4kPYrwmlZqBcCU0Gx5a41rRvbS0rA4xlodbeAu7iG0wOWo3o/hnrPTkX3BZ0pynztBGyMlmuLmbrGeNxKEoJCkpQhDjdm114yvKQyG0VcuI1st3XIjBJ+aVqSxq8D83sYuOaR9KGx1Uga7N0A9TLDoDqk6/ZwSkGGu1rmyLBumHrNmIeq2ucDg3vyrYoqvpZ+yz03U/FvzQnJqmpJaB0IxZltVAl1iThsVFUjojhy2THiKSSTbFyA66qEJo0BEGCSB8WGh7E8zl0I7N7mUl7w4vK20TRbu4p9ofoT2N5/zz334F3vehe6urqQSqVw/fXXJ9AsQgKSThdWRALw9LFasDTf0hXnkFGYJOv2HI4dQUWCIvYEwcXqB1Utkq4P9NwwX+s8/weYigA0n7OmVpkP3CuvZhBUHzwq5yKpYeBAjQiwrn1o2en4V1UjcB7JJK5bsyuD/TjHph0CbNw8R/qqmU3zVE2UhjiX6zvdqgs1tcGTjyeBcsYEVRI65gUkcI8xPDyMQw89FD/84Q+TaA8h/pSow3HJYRZILXOtwrEmo+AGkHCHFvZhqSqiI1skQzbQTbR6RWjPrGMpyK8ixQYFJFH/VsTvg2c/f07HX2WWmjyi+Lm5YL4GkvIV9XuhNtdbXR0ggMWtvqD9sYJidjrcTe0F8K8tAez9WxnscuC767TTTsNpp52WRFsI8aazW/KltRZ5yFinrhEYGQgQeVngHqGxBZgYlWHmMNOB+Y1sZ+rlfNjn0s0b8i+Wj2Ta+bOddFqmTdu1NUplpo8KFklXAgQ4xfJQdWhTFGER+7uH4suAGSeLaqEToJsxz9/tFIk7Q0iTpN3y3uaXi9erngDWsYXLRRgHDYBxcwlS2S52QlxfBadU22WQuI/k+Pg4xseNHG0DAwNJV0lmK5n60gqmae+Q9DCu6YFs2PuDSHkzVXzRUjJNWSx1OHRm7Z1ijWhoRt7DKVUCwzNB0t7UN8nw9eiw+jYq9ZrxFBGOBYWr02voUGWfIg1tu5x3fe5l5fnKc4Q5Bfb21zcWTySkq6z9g4pVGgjf3vZOf4uyXUd61eV1GwdyJYpj3D7AdqpW9bgvi5IVo8mS+Gva2rVr0draOvOvu7s76SoJKQzpKhGDyh2qqZOZv8QjfUsBiKO/S1eJddjPz8+1roQ73do6o21hfBGjpgCxE3RoOxaLZG6dxtbci5gtCMppWDKpoe22jsIEoJmtj63zgLk5i2DekGHIYKYoZEvgBctL1CV1S6bTxhSiSRoDOhbLfa+S7L5U8L0OC9OMKCQuJC+55BL09/fP/Nu8eXPSVRJSmqRcvwSnEM8jN0ERuOkx94RBfCTnLwUWLFO0GvsN8/nU5fQ5MCEj5f2YM19cQ+xtq6mVh+78pdbfgqIL0thTlIQ4BmaLZFALaNLow87NPvkAAzU54P7l6Uiv7WMMtulcAiza2+pm43puQtZb1yAv6cppfCJaStscZv2JSl5AUQldvy4kPrSdyWSQycSU0JmQsiZktGKxaOuQ4digeQRTADSFHQwbsRzEJyuVCl+PikVQF7UqEeKBZkBRIMwc3U7o4m9eFzAxHk4Mdi6WlFeuU/6FxBLvovoC4eIbG2Vigbhe3GrrgMV7O18jbi+aASdG8cfuhuKxapwvrDPJzsO6jMTYlkiYGpJOy7lUdVnwo71T7qEgc6eXAMwjSUhZUgCTZFW1MUQUKKdkyntKws5umcNc1bdUZ14XMNjnPPdvIrjsQ1uHTJvY3gHs3p6/rt06qR+7jsVA/04ZbnXFHGwTcug17AO3vin4OdGpqvaZdaOAQ7pmi6T5WNQ1iM/w1GRxfa1dA39cTlyoiHPPBrh/zztNCZy30IIwASWpUmQ6bfVvzotHinqMTAVmGnL3dSm4QKgT+AodGhrC+vXrZ75v2LABTz31FObMmYMlS5bE2jhCZhVllmTWQlBRU1UtD22nKdfCBk1FETphcNvn5nYZfjInuLacWpt1UstZIWsz/rk7gzw/Mg3yL65clCWJyznw8uM0CzXL+08qXPaCvIIKQColL1wDuxWGTy1mW4WybfUUvCtSsN4XDIVRopZ51nntLZvHIPr8Hgul5JrhQmAh+dhjj+Gtb33rzPfPfvazAIALL7wQV111VWwNI4R4UA4vrKEf2mWAvXN3jZpO8CGQSrnMPFPGLyyemBO6twHjo84vFmXw4FUiU5/cpAEz+Aw1J9HPmIeB61RmwCoUMVv442xDiRNYSJ500knQIptyCalEAloOPIlxOIWEw83CrDqjjiMx9K2zSUe63TLptFpkbtlaa4MEepk+B718fKtJ4Fmv+6rW1BZhNrKwuFgeZ8tLS0ToI0lIoaiUPqfUO9eOxUBvj0Qyx0VcFsk4nttFHy4sAeYvBaYnA0TvqpITFLFHpztUk8zKtk3ThvuJphVG2FXXyLSWpXCdhuqr4u7fCjSCkSAUkoQUjPLsJGbQoxOjRL+WAnUNwMJl0ctR8XkN/GCIQUmWjZVHAc31ize1GQAJXKddywMG6wRocyF9qFvnWYV2114AtALMs54j6Gw4hSDUIU9QVJYRJXg2CZmlxDmyXQwWrRCrhePDpjw7QCu2tB6BNnUTkkWwulSVoJAsx+vdjN7+qmpnEVTXCIwNAw1l4hdsj7AvlIAsJ/QXZ3sSf8s6cVQUYFrUEoVCkpCCUaa9hE4qXfa74ElzGzA6KL5bnSoZKFwORkI5xZUxp4spJ3/2uPNsxorPcZy7UIRkXEPeoYc4Vc73bL6Jg+JhBe5aIdejp4WfFkmgADPbEEKcKKMHfKWQqZeHx/ylahYat5Q/UYhD+CU1xWEQ5i0ypsQD1BI2d/pMn1sK++VGOi1zzhfDslemfnUlgdehS6edRaTbNmHPg9MtX04vgKBFkpDCESmalxSEQL5bcflFJsCc+TJLTezBJorUN8q/zS+rb1NTa03gDgDQxNo3OVG8fSkYJXDdkGDE0qc7TEJAIUkIcaV1LjA9XcZpSdwor44vFtye+w3NwMiA+FaNjwQsNKbj2NgKJBxYnAwOaVYamovSkuKSZP7R5IquDFRfIMtvhpqwUEgSUkha5kbbvqkVGOqX2VVIkfFI+aMnkt4ZUEhWxnOHODGb8n+WDRFT73il+gqjI+1llEkQFIUkIeVEW6dYm0otBY95WIfD9kQnaABN5RhxkoHHLhhxCvYkXFrS5SHRyqOVhBAhlSpNX7F0GpjXZXyuBBLxhZxlSiCdDiYk65uA4QHje8kcjpANKZn2lxml4GesREr8qqenHKbrVHwr8vKHzJRgX+8AhSQhJB6c5j2uGOKK2o6nmJIhXQVgUn39tk55UertSaxJpUscY9uz5AKqaxTf2No6oG9nghVFPOYpAPOXAGMjQENT/rKwp6NjsfhZt3WELKCwVIjpgBBCEqRcDCiFRn+5UHV3SKeBprbEmhOaWaLPhDK4WFMpidYvRV/wlO1LVTXQ2JJ/jUeZGKCuAZizoLRTXpmgRZIQQpIisACZVYpFhEBVdYApBe3MsuOhShlovcKT8LWgfMxTjh/zmLsQ6N0RPcCyDKBFkhBCIsOhbUdSKbHWzKb5v0lxKOa90dwmfx39IF2oqZUk+3UeUywCmA03PS2ShBASldgsSOX/UImXCjLN2YdMkyK0dXi243HMW+eJ32ZtXfzTeM6CW55CkpBKpEx8b8qHChI8haCtAxjskwT+JUEhnvYJX0MLlwMTYxUeFBeSVMqwLJqFZNlElycLhSQhlcTchcBgL9DeWeyWVAaBHzSzwDwRB83tpRloEZgSOp/VNXQxiJ04hGQJXSMhoZAkpJJoaK7QKeeKRHsHsHNCXRSV/zOFRCGdBrJaeMFXZnM0lxRhNCENkgAoJAkhJDpuD/7qWhlSJJVFW4fkP5yzUH2bVAroWiEvExwyLWHMYj2G81RV/jKs/PeAEEKKxbwuYHw0Rr8zWpRKkqBT1TW3y1SmQWd5SqVLxMpVQnNVZhqAiVGgvjHhihQPfNyHpbEVmJxQiO4uXSgkCSEkLPVN8QYvlMizm+SY2wWMDgItc4JvW85ThZaQjkTHIvlbilbaONqUSpW9z3oZX+mEEDLL0KOUG1uK2w4iNDRJgFo5i8JQlJBoS6VKTESWisIuHWiRJISQUqGpTfLVMbqWhKGMh0eLQhh9Wl0rwjadLjGBWzwoJAkhpFRIpWRGDEKC0LUCmJ6ShNlxkEpVnuFNVRSmUsCivVBSVtsiU2n2ekIIIWR2UVUdn4gEJIisqlqG9Uk+KVojzdAiSQghhBCDTL1YOWc9FINxQIskIYQQQioPWhVjgRZJQgghhFQeNRnJkFDF4LYoUEgSQgghpPJIpYA5C4rdirKHQ9uEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQUFJKEEEIIISQU1YWuUNM0AMDAwEChqyaEEEIIIQroOk3XbW4UXEgODg4CALq7uwtdNSGEEEIICcDg4CBaW1tdl6c0P6kZM9lsFlu3bkVzczNSqVSidQ0MDKC7uxubN29GS0tLonWR5OB5LH94DssfnsPyh+dwdlCo86hpGgYHB9HV1YV02t0TsuAWyXQ6jcWLFxe0zpaWFt40swCex/KH57D84Tksf3gOZweFOI9elkgdBtsQQgghhJBQUEgSQgghhJBQzGohmclk8JWvfAWZTKbYTSER4Hksf3gOyx+ew/KH53B2UGrnseDBNoQQQgghZHYwqy2ShBBCCCEkOSgkCSGEEEJIKCgkCSGEEEJIKCgkCSGEEEJIKGa1kPzhD3+IZcuWoa6uDsceeyweeeSRYjepYrnnnnvwrne9C11dXUilUrj++ustyzVNw5e//GUsXLgQ9fX1OOWUU/DKK69Y1tmzZw8uuOACtLS0oK2tDR/96EcxNDRkWeeZZ57Bm9/8ZtTV1aG7uxv/+Z//mfSuVQRr167F0UcfjebmZnR2duLd73431q1bZ1lnbGwMa9aswdy5c9HU1ISzzz4bO3bssKyzadMmnH766WhoaEBnZyf+5V/+BVNTU5Z17rrrLhxxxBHIZDLYe++9cdVVVyW9exXD5ZdfjkMOOWQmkfGqVatw0003zSznOSw/LrvsMqRSKVx88cUzv/E8ljaXXnopUqmU5d9+++03s7zszp82S7nmmmu02tpa7YorrtCef/557eMf/7jW1tam7dixo9hNq0huvPFG7Ytf/KL2xz/+UQOgXXfddZbll112mdba2qpdf/312tNPP62deeaZ2vLly7XR0dGZdd7xjndohx56qPbQQw9p9957r7b33ntr559//szy/v5+bf78+doFF1ygPffcc9rvfvc7rb6+XvvJT35SqN2ctaxevVq78sorteeee0576qmntHe+853akiVLtKGhoZl1PvnJT2rd3d3a7bffrj322GPacccdp73pTW+aWT41NaUddNBB2imnnKI9+eST2o033qjNmzdPu+SSS2bWee2117SGhgbts5/9rPbCCy9o3//+97Wqqirt5ptvLuj+zlb+/Oc/a3/961+1l19+WVu3bp32hS98QaupqdGee+45TdN4DsuNRx55RFu2bJl2yCGHaJ/5zGdmfud5LG2+8pWvaAceeKC2bdu2mX87d+6cWV5u52/WCsljjjlGW7Nmzcz36elpraurS1u7dm0RW0U0TcsTktlsVluwYIH2X//1XzO/9fX1aZlMRvvd736naZqmvfDCCxoA7dFHH51Z56abbtJSqZS2ZcsWTdM07Uc/+pHW3t6ujY+Pz6zz+c9/Xlu5cmXCe1R59PT0aAC0u+++W9M0OV81NTXaH/7wh5l1XnzxRQ2A9uCDD2qaJi8T6XRa2759+8w6l19+udbS0jJzzv71X/9VO/DAAy11nXfeedrq1auT3qWKpb29Xfv5z3/Oc1hmDA4Oavvss4926623aieeeOKMkOR5LH2+8pWvaIceeqjjsnI8f7NyaHtiYgKPP/44TjnllJnf0uk0TjnlFDz44INFbBlxYsOGDdi+fbvlfLW2tuLYY4+dOV8PPvgg2tracNRRR82sc8oppyCdTuPhhx+eWectb3kLamtrZ9ZZvXo11q1bh97e3gLtTWXQ398PAJgzZw4A4PHHH8fk5KTlHO63335YsmSJ5RwefPDBmD9//sw6q1evxsDAAJ5//vmZdcxl6Ovwvo2f6elpXHPNNRgeHsaqVat4DsuMNWvW4PTTT8871jyP5cErr7yCrq4urFixAhdccAE2bdoEoDzP36wUkrt27cL09LTlIAPA/PnzsX379iK1irihnxOv87V9+3Z0dnZalldXV2POnDmWdZzKMNdBopPNZnHxxRfj+OOPx0EHHQRAjm9tbS3a2tos69rPod/5cVtnYGAAo6OjSexOxfHss8+iqakJmUwGn/zkJ3HdddfhgAMO4DksI6655ho88cQTWLt2bd4ynsfS59hjj8VVV12Fm2++GZdffjk2bNiAN7/5zRgcHCzL81cda2mEkFnPmjVr8Nxzz+G+++4rdlNICFauXImnnnoK/f39uPbaa3HhhRfi7rvvLnaziCKbN2/GZz7zGdx6662oq6srdnNICE477bSZz4cccgiOPfZYLF26FL///e9RX19fxJaFY1ZaJOfNm4eqqqq8KKcdO3ZgwYIFRWoVcUM/J17na8GCBejp6bEsn5qawp49eyzrOJVhroNE46KLLsINN9yAO++8E4sXL575fcGCBZiYmEBfX59lffs59Ds/buu0tLSUZQdbitTW1mLvvffGkUceibVr1+LQQw/Fd7/7XZ7DMuHxxx9HT08PjjjiCFRXV6O6uhp33303vve976G6uhrz58/neSwz2trasO+++2L9+vVleR/OSiFZW1uLI488ErfffvvMb9lsFrfffjtWrVpVxJYRJ5YvX44FCxZYztfAwAAefvjhmfO1atUq9PX14fHHH59Z54477kA2m8Wxxx47s84999yDycnJmXVuvfVWrFy5Eu3t7QXam9mJpmm46KKLcN111+GOO+7A8uXLLcuPPPJI1NTUWM7hunXrsGnTJss5fPbZZy0vBLfeeitaWlpwwAEHzKxjLkNfh/dtcmSzWYyPj/Mclgknn3wynn32WTz11FMz/4466ihccMEFM595HsuLoaEhvPrqq1i4cGF53oexh++UCNdcc42WyWS0q666SnvhhRe0T3ziE1pbW5slyokUjsHBQe3JJ5/UnnzySQ2A9u1vf1t78skntddff13TNEn/09bWpv3pT3/SnnnmGe2ss85yTP9z+OGHaw8//LB23333afvss48l/U9fX582f/587QMf+ID23HPPaddcc43W0NDA9D8x8KlPfUprbW3V7rrrLkvKipGRkZl1PvnJT2pLlizR7rjjDu2xxx7TVq1apa1atWpmuZ6y4tRTT9Weeuop7eabb9Y6OjocU1b8y7/8i/biiy9qP/zhD5lyJEb+7d/+Tbv77ru1DRs2aM8884z2b//2b1oqldL+9re/aZrGc1iumKO2NY3nsdT53Oc+p911113ahg0btPvvv1875ZRTtHnz5mk9PT2appXf+Zu1QlLTNO373/++tmTJEq22tlY75phjtIceeqjYTapY7rzzTg1A3r8LL7xQ0zRJAfTv//7v2vz587VMJqOdfPLJ2rp16yxl7N69Wzv//PO1pqYmraWlRfvwhz+sDQ4OWtZ5+umntRNOOEHLZDLaokWLtMsuu6xQuzircTp3ALQrr7xyZp3R0VHtH/7hH7T29natoaFBe8973qNt27bNUs7GjRu10047Tauvr9fmzZunfe5zn9MmJyct69x5553aYYcdptXW1morVqyw1EGi8ZGPfERbunSpVltbq3V0dGgnn3zyjIjUNJ7DcsUuJHkeS5vzzjtPW7hwoVZbW6stWrRIO++887T169fPLC+385fSNE2L385JCCGEEEJmO7PSR5IQQgghhCQPhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAkFhSQhhBBCCAnF/w8nMtfYsuDkTgAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAHDCAYAAAAupnzhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYUElEQVR4nO3deZyO9f7H8dd9z5jFMotkxmgsyVLZikxTaDGZyql0OifJKUlEFKYFdSytHFIhEi2qc4p0TuVnK4fKSWNk7EtSEdEMYmYsY7b7+/vjMjd3DRkx133f1/v5eFyPe/vec39uV3i7+n4/X5cxxiAiIiIi4jBuuwsQEREREbGDgrCIiIiIOJKCsIiIiIg4koKwiIiIiDiSgrCIiIiIOJKCsIiIiIg4koKwiIiIiDiSgrCIiIiIOJKCsIiIiIg4koKwiIgDTZ8+HZfLxbZt2+wuRUTENgrCIiIiIuJICsIiIiIi4kgKwiIi8hvGGPLz8+0uQ0TkrFIQFhER6tWrx5/+9Cc++eQTWrduTWRkJK+++qrdZYmInFUKwiIiAsDmzZvp2rUr1113HePHj6dly5Z2lyQiclaF2l2AiIj4h++++44FCxaQmppqdykiIhVCV4RFRASA+vXrKwSLiKMoCIuICGAFYRERJ1EQFhERACIjI+0uQUSkQikIi4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjuYwxxu4iREREREQqmq4Ii4iIiIgjKQiLiIiIiCMpCIuIiIiIIykIi4iIiIgjKQiLiIiIiCMpCIuIiIiII4XaXUCg8Xg87Nq1i2rVquFyuewuR0RERER+xRjDgQMHSEhIwO0+8XVfBeFy2rVrF4mJiXaXISIiIiK/Y8eOHZx33nknfF1BuJyqVasGWL+wUVFRNlcjIiIiIr+Wl5dHYmKiN7ediIJwOZVOh4iKilIQFhEREfFjvzeNVYvlRERERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRTisIT5o0iXr16hEREUFSUhLLly8/6fhZs2bRpEkTIiIiaNasGfPmzfN53RjD8OHDqVWrFpGRkaSkpLBlyxafMfv27aNbt25ERUURExNDz549OXjwoPf1I0eOcM8999CsWTNCQ0Pp3LlzmbV8/vnnXHrppYSHh3PBBRcwffr00/klEBEREZEAV+4gPHPmTNLS0hgxYgQrV66kRYsWpKamsnv37jLHf/XVV3Tt2pWePXuyatUqOnfuTOfOnVm/fr13zJgxY5gwYQJTpkwhIyODKlWqkJqaypEjR7xjunXrxoYNG1i4cCFz5sxhyZIl9O7d2/t6SUkJkZGRPPTQQ6SkpJRZy9atW+nUqRPXXHMNq1evZuDAgdx333188skn5f1lEBEREZEA5zLGmPK8ISkpicsuu4yXX34ZAI/HQ2JiIg8++CBDhgz5zfguXbpw6NAh5syZ433u8ssvp2XLlkyZMgVjDAkJCTz88MM88sgjAOTm5hIXF8f06dO544472LRpExdddBFff/01rVu3BmDBggXceOON/PTTTyQkJPh85j333ENOTg4fffSRz/ODBw9m7ty5PiH8jjvuICcnhwULFpzS98/LyyM6Oprc3FyioqJO6T0iIiIiUnFONa+V64pwYWEhmZmZPldc3W43KSkppKenl/me9PT031yhTU1N9Y7funUrWVlZPmOio6NJSkryjklPTycmJsYbggFSUlJwu91kZGSccv2/V4sjZW+HrB+hqNDuSkREREQqVGh5Bu/du5eSkhLi4uJ8no+Li+Obb74p8z1ZWVlljs/KyvK+XvrcycbUrFnTt/DQUKpXr+4dcypOVEteXh75+flERkb+5j0FBQUUFBR4H+fl5Z3y5/m9bRth/EPWfZcLomtAjdpQo5Z1WzMRatWH6vHg1rpKERERCS7lCsJONGrUKJ588km7yzg7dv1w7L4xkLPHOr5b7TsuLALi60J8PSsYJ5wPiY0gsmpFVisiIiJyRpUrCNeoUYOQkBCys7N9ns/OziY+Pr7M98THx590fOltdnY2tWrV8hnTsmVL75hfL8YrLi5m3759J/zc8tQSFRVV5tVggKFDh5KWluZ9nJeXR2Ji4il/pl/LP2Tdtr4Obrkf9u46euyEPTutaRPZP0LhEdi+2TqOd25tSGwMdZpAncZQ+wIIC6/47yEiIiJyGsoVhMPCwmjVqhWLFi3ytifzeDwsWrSI/v37l/me5ORkFi1axMCBA73PLVy4kOTkZADq169PfHw8ixYt8gbfvLw8MjIy6Nu3r/dn5OTkkJmZSatWrQBYvHgxHo+HpKSkU64/OTn5N63bjq+lLOHh4YSHB2m4yz9g3VauBlVjrKPeRb5jSkrgl13w89Zjx87v4ZefrbC8ZyesXGyNdbshoQE0aG4d5zeFKtEV+Y1ERERETlm5p0akpaXRvXt3WrduTZs2bXjppZc4dOgQPXr0AODuu++mdu3ajBo1CoABAwZw1VVXMW7cODp16sSMGTNYsWIFU6dOBcDlcjFw4ECeeeYZGjZsSP369Rk2bBgJCQnesH3hhRdy/fXX06tXL6ZMmUJRURH9+/fnjjvu8OkYsXHjRgoLC9m3bx8HDhxg9erVAN6A3adPH15++WUee+wx7r33XhYvXsz777/P3LlzT/fXL7AdPtqHObLKiceEhFhzhWsmQov2x54/mAs7NsOOb+HHb6z7B/bDT1us44t/W+Nq1YMGLeD8ZtCwpRW2RURERPxAuYNwly5d2LNnD8OHDycrK4uWLVuyYMEC7yK07du34z5uYdUVV1zBu+++y9///ncef/xxGjZsyEcffUTTpk29Yx577DEOHTpE7969ycnJoW3btixYsICIiAjvmH/961/079+fDh064Ha7ue2225gwYYJPbTfeeCM//vij9/Ell1wCWBt2gHX1ee7cuQwaNIjx48dz3nnn8dprr5GamlreX4bgcKQ0CFcr/3urRsOFbawDjs4x3g1bN8B3a+GHtdbUip+3WceXH1sL8s5rCE1aQ5PLoO5FVtAWERERsUG5+wg7XVD1EZ4yGDZnQtfHoE3HM//zD+yHH9bB9+vg+zW+i/MAIipDo0utUHxRktW1QkREROQPOtW8pq4RTla6WK7yWer+UC3Wmk5ROqUi9xcreH/zNXybCYfyYO2X1gFQ90JodiU0aws1zzs7NYmIiIgcpSDsZKWL5U5nasTpiD7HuvLcpiN4SmDHFisUb8qw5hn/uMk65rwGcXWtUNy8rTWdwuWqmBpFRETEMRSEnaz0ivDJFsudLe4QqNvEOlLvgty9sP4rWLcUtqy22rZl/wj/fdfa3OPSa6wjrm7F1yoiIiJBSUHYqYyBw8e1T7NbdA248mbryD8IGzOsULxpudXX+NN/WkftBnDJtXDp1RAb97s/VkREROREFISdqvCINT0B/G+HuMiq0KqDdRTkW1eKV35mTaPY+b11zJlmtWRrkwotr4LwsjdEERERETkRBWGnyj/aOs0dYm2h7K/CI4+F4kO5sOZ/sOoz+H6t1ZHih3Xw4SRoeTUkXW9tCKL5xCIiInIKFISdqnRaRGTVwAmOVaLhij9ZR84eWLEQMj6xpk5kzLeOmnUgKRUu62h1rRARERE5AQVhpzrbrdPOtphzIeVO6NAVflhvheA1S2D3dvi/aTDvTWjeDtreDPWbBk7YFxERkQqjIOxUFd067WxxuaBBM+v4cz9Y/QUsm2e1Y1v1mXUknG8twmvVQXOJRURExEtB2KlK5wjb0TrtbImoApffaB07tsDS2bBysbWj3ayXrCvFbVKh7S1wbm27qxURERGbKQg71eGjQdgfWqedDYkN4Y6H4ebesPwTKxTv3QVL/gP/+xCaXgnX/BXqX2x3pSIiImITBWGnKp0aERGgc4RPVeVqcPVfoP2fYfMK+N9HVm/idV9aR72LrEDc9Aqrg4aIiIg4hoKwUwX6YrnycrvhwjbWkfUjfP4BrPgvbNsIbz4JNRLgqtusbhOaRywiIuIIbrsLEJsc3z7NaeLrWtMmhv8LrutmXTXeuwv+PRGe7gYL/3VsDrWIiIgELQVhpzpSuljOgUG4VFR1uLEHDH8XbnsQzqkFh/Ks1mtP/w3mv2U9FhERkaCkqRFOFeyL5cojPNLqJJH8J1j9OSx8F7J/hE/fgS8+sFqvXf0XbdAhIiISZBSEnSpfV4R/IyTE6jV8yTWw9ktrisSu72HxTGuR3RV/gmu7WFeSRUREJOApCDuVgvCJud3Qsj20aAcblsHCf8L2zfDFvyF9LrTrDNfcDlWi7K5URERE/gAFYady8mK5U+VyQdNkuPhyq/XagresHesWzYCl/2e1XWv/Z4iobHelIiIichoUhJ2opBgKj1j3ndI+7Y9wuaDJZdC4tXWFeN4b8PNWmD/dmjKR0hWuuAkqhdldqYiIiJSDukY40fGtwYJ9Q40zqfQK8SOvwl2PQ43acDAHPnoFnusOy+aBp8TuKkVEROQUKQg7UWkQDq9sLRCT8nG74dJrYcjr0CUNYs6FnD0w8wV4/n5r5zoRERHxewrCTuRtnaarwX9ISChcfiM8/hbc0sdqRffzNpj6OEwZDLt+sLtCEREROQkFYSfK10K5M6pSmNVn+Im3rduQUNicaV0dnvE85O61u0IREREpg4KwE6l12tlRuZp1ZXjIG9DyKjAGMhbAc/dYu9SVLlAUERERv6Ag7ESHFYTPqhoJ0H0YDJgA9S62AvCn78CoHrDqcysgi4iIiO0UhJ0oX9srV4h6F8FDL0H34RAbZy2oe/sZmPyo1X5NREREbKUg7ESlQTiiir11OIHLZe1SN+R1SL3Lmk/83Wpr/vB/Jvm2shMREZEKpSDsRLoiXPHCIuD67tb84eZtweOB/30Iz5b2H/bYXaGIiIjjKAg7kbZXtk/1eOgxEvr8A+LqwKFcq//w+Adhxxa7qxMREXEUBWEnUtcI+zVuBY9OtbpMRFSG7ZvhxX7w4WQ4ctju6kRERBxBQdiJNDXCP4SEWn2Hh06HS68B44El/4F/9IR1S+2uTkREJOgpCDuR94qwFsv5hajqcNcTcP9oOKeW1V3ijRHw+jDYn213dSIiIkFLQdiJvEFYV4T9SpPW8NhrkHInuENgfTqM7gmffwAlJXZXJyIiEnQUhJ3GGM0R9mdh4dDpXnjkVajf1NqM4+Mp8OID8JMW04mIiJxJCsJOU5B/rFVXZQVhv1WrHvR/Abo8bM3l3vm9tZhu3htQXGh3dSIiIkFBQdhp8o+2TgupBJXC7a1FTs7thstvsHoPt2hv/QNm4bvwfF/4cZPd1YmIiAQ8BWGnOXzcQjmXy95a5NRUi4V7hltHtVjI/hHGD4CPX7WmToiIiMhpURB2GrVOC1wt2sPg16B1itVq7fNZMPZ++G6N3ZWJiIgEJAVhp1HrtMBWJRq6DYFez0LMubB3J0x6GD6YYM3/FhERkVOmIOw0ap0WHC5KgsemQXIn6/HS2fB8H9i20d66REREAoiCsNMcPrpYTq3TAl9kVbh9EPT5x7GrwxMGwtw3oLjI7upERET8noKw0+Qfsm7VOi14NG5lXR0unTv833fhxf6w6we7KxMREfFrCsJOU9o+TVMjgktkVWvu8D3DoUoU7PoeXugHi2eCR7vSiYiIlEVB2GkOa7FcUGvR3tqm+aLLoaQI/m8avPww7N1ld2UiIiJ+R0HYadQ+LfhFVYf7nrZ2pQuPhK3rYWxvyFhgbbEtIiIigIKw85ROjYjQHOGg5nJZu9I9OhXOb2ZtvDHjeXj7mWP/GBIREXE4BWGn0WI5ZzmnFvR7Hjr1BHcIrP7Cujr8wzq7KxMREbGdgrDT5Kt9muO4QyClKzw0HmokwP7d1rzhBW9BiRbSiYiIcykIO03pFWEFYeep2wQengKtr7ParH3yDrycBvuy7K5MRETEFgrCTlJcZM0VBS2Wc6qIytBtMPxtqHV/2wYYez+s+szuykRERCqcgrCTHL9IKqKyfXWI/Vp1gEdehboXwpFD8Paz8N5YKMi3uzIREZEKoyDsJKVBOKKKNW9UnO2cWvDgS9Dxb+Byw/JPrB3psn60uzIREZEKoSDsJIe1UE5+JSQEbrgHHhgLUedA9o/wYj/4+lO7KxMRETnrFISdxLuZhoKw/MoFLeCRKdDoUmse+btjrKkSpXPKRUREgpCCsJOUBmFdEZayVIuF+0dZV4iPnyqRrakSIiISnBSEncQbhNUxQk7AHWLNGe47BqpVh6xt8EI/+Hqh3ZWJiIiccQrCTnJYUyPkFDVsCY++Cg0vOTpV4h8wY5ymSoiISFBREHYS7Son5VEtFvqMhuu7g8sFGfPhpQdhz092VyYiInJGKAg7ieYIS3m5QyD1rqNTJWLh563wwgOw/iu7KxMREfnDFISd5LCCsJymhpdY2zPXbwpHDsPrw2HeG+ApsbsyERGR06Yg7CTe9mlaLCenIfoc6Pc8tP+z9Xjhu/Dq43Aw1966RERETpOCsJMcv7OcyOkICYVbH4C7HoewCPg2E17oC9s3212ZiIhIuSkIO4muCMuZcum1MGAC1KgN+3fDxIGwbL7dVYmIiJSLgrCTaGc5OZMSzoe0SdD0CigugpnjrKOo0O7KRERETomCsFN4PMdNjVAQljMksir0GAmd7rV2o1s237o6vH+33ZWJiIj8LgVhpyg4DMZY9zU1Qs4ktxtS7rS2Z64SBTu+tVqs/bDO7spERERO6rSC8KRJk6hXrx4REREkJSWxfPnyk46fNWsWTZo0ISIigmbNmjFv3jyf140xDB8+nFq1ahEZGUlKSgpbtmzxGbNv3z66detGVFQUMTEx9OzZk4MHD/qMWbt2Le3atSMiIoLExETGjBnzm1peeuklGjduTGRkJImJiQwaNIgjRxywW1bp1eDQSlApzN5aJDg1bgVpkyGhARzMgcmPwldz7K5KRETkhModhGfOnElaWhojRoxg5cqVtGjRgtTUVHbvLvt/hX711Vd07dqVnj17smrVKjp37kznzp1Zv369d8yYMWOYMGECU6ZMISMjgypVqpCamuoTULt168aGDRtYuHAhc+bMYcmSJfTu3dv7el5eHh07dqRu3bpkZmYyduxYRo4cydSpU71j3n33XYYMGcKIESPYtGkTr7/+OjNnzuTxxx8v7y9D4PFupqGrwXIWVY+Hh16CFu2hpBhmvQQfjLfmEIuIiPgbU05t2rQx/fr18z4uKSkxCQkJZtSoUWWOv/32202nTp18nktKSjL333+/McYYj8dj4uPjzdixY72v5+TkmPDwcPPee+8ZY4zZuHGjAczXX3/tHTN//nzjcrnMzp07jTHGTJ482cTGxpqCggLvmMGDB5vGjRt7H/fr189ce+21PrWkpaWZK6+88pS/f25urgFMbm7uKb/HL3y7ypiBHYx5rofdlYgTeDzGLPyXMYNSrP/uJg4yJm+f3VWJiIhDnGpeK9cV4cLCQjIzM0lJSfE+53a7SUlJIT09vcz3pKen+4wHSE1N9Y7funUrWVlZPmOio6NJSkryjklPTycmJobWrVt7x6SkpOB2u8nIyPCOad++PWFhYT6fs3nzZvbv3w/AFVdcQWZmpncqxw8//MC8efO48cYby/PLEJjyD1i36hghFcHlsuYN93wawivD92utecM/bfn994qIiFSQcgXhvXv3UlJSQlxcnM/zcXFxZGVllfmerKysk44vvf29MTVr1vR5PTQ0lOrVq/uMKetnHP8Zd955J0899RRt27alUqVKNGjQgKuvvvqkUyMKCgrIy8vzOQJSvrZXFhtcfDkMmgjn1oacPTBhIKz8zO6qREREAId1jfj888957rnnmDx5MitXruQ///kPc+fO5emnnz7he0aNGkV0dLT3SExMrMCKz6DDCsJik7i6MGgSNLkMigrgnWdhzmvgKbG7MhERcbhyBeEaNWoQEhJCdna2z/PZ2dnEx8eX+Z74+PiTji+9/b0xv16MV1xczL59+3zGlPUzjv+MYcOGcdddd3HffffRrFkzbr31Vp577jlGjRqFx+Mps/6hQ4eSm5vrPXbs2FHmOL+nXeXETpFVodczcG0X6/GiGfDaMDhyyN66RETE0coVhMPCwmjVqhWLFi3yPufxeFi0aBHJycllvic5OdlnPMDChQu94+vXr098fLzPmLy8PDIyMrxjkpOTycnJITMz0ztm8eLFeDwekpKSvGOWLFlCUVGRz+c0btyY2NhYAA4fPozb7fuVQ0JCAKuFW1nCw8OJioryOQKSd2pEFXvrEOdyh8BNveCux60WfpuWw4QBsK/saVUiIiJnW7mnRqSlpTFt2jTeeustNm3aRN++fTl06BA9evQA4O6772bo0KHe8QMGDGDBggWMGzeOb775hpEjR7JixQr69+8PgMvlYuDAgTzzzDPMnj2bdevWcffdd5OQkEDnzp0BuPDCC7n++uvp1asXy5cvZ+nSpfTv35877riDhIQEwJr/GxYWRs+ePdmwYQMzZ85k/PjxpKWleWu56aabeOWVV5gxYwZbt25l4cKFDBs2jJtuuskbiIOW2qeJv7j0Wuj/AlSrDj9vgxf7w9YNdlclIiJOdDotKSZOnGjq1KljwsLCTJs2bcyyZcu8r1111VWme/fuPuPff/9906hRIxMWFmYuvvhiM3fuXJ/XPR6PGTZsmImLizPh4eGmQ4cOZvPmzT5jfvnlF9O1a1dTtWpVExUVZXr06GEOHDjgM2bNmjWmbdu2Jjw83NSuXduMHj3a5/WioiIzcuRI06BBAxMREWESExPNAw88YPbv33/K3z1g26e9OtRqY7Vsnt2ViFj27zZmbG/rv8uHrzdmxX/trkhERILEqeY1lzEnmBMgZcrLyyM6Oprc3NzAmiYx/iHYthF6jIDm7eyuRsRSkA//Gg3rllqPr7sTrr/H2rZZRETkNJ1qXtPfNk6hqRHij8Ij4Z4R0OEO6/HCd+HtZ6DQAduei4iI7RSEneKwFsuJn3K74U/3QdfHICQU1iyBl9Mgd6/dlYmISJBTEHaKI2qfJn6uTUfoOxaqRMGOb61FdDu0E52IiJw9CsJOUFRoHaANNcS/NWgGA1+2NuHI3QsvD4K1X9pdlYiIBCkFYSconR/sckF4ZXtrEfk9NRJgwHhrJ7rCIzD9Sfj8A9C6XhEROcMUhJ0g/4B1G1lVq/ElMERWhfuegba3WAH44ynwn5ehRNsyi4jImaNU5ASlC+UitFBOAkhICPy5P9zSx/q/GV9+DG+MsFquiYiInAEKwk6Qr4VyEqBcLrj6L3DPcGtb5o3LjnaU+MXuykREJAgoCDuBt4ewFspJgGreDh54HqrGwE9bYPyD1vbMIiIif4CCsBMoCEswqHcRDJgA554H+3fDhAGwZZXdVYmISABTEHaCw8ctlhMJZDUSrDB8fjM4cgimDIHln9pdlYiIBCgFYSfIP2TdVlYQliBQJQr6/gMuvQY8JfDeGFjwltqriYhIuSkIO4G3fZoWy0mQCA2DbkMh5U7r8SfvwLv/gOIie+sSEZGAoiDsBKXt0yLVPk2CiNsNne6FLmnW/RX/hamPH5sTLyIi8jsUhJ1A7dMkmF1+I/R6FsIjrcVzL6dZ2zOLiIj8DgVhJ8jXYjkJck0ug/4vQLVY2PUDjB8A2dvtrkpERPycgrATlC6WUxCWYHZew6Pt1WrD/myrvdrWDXZXJSIifkxB2AnUPk2c4pxa8NAEqNvE+u/+lUdh/Vd2VyUiIn5KQTjYeTxQcNi6rznC4gRVo6HvWLjocigqhDdGwldz7K5KRET8kIJwsDty6Fh/VXWNEKcIj4R7n4SkG8B4YNZLMH+6eg2LiIgPBeFgVzotolK41XtVxClCQqzWah3vsh5/+k+Y+QKUlNhbl4iI+A0F4WCnXeXEyVwuuKE7/HUguNyQMR/eGA4F+XZXJiIifkBBONiVtk6LUBAWB7viT9BjBFQKg40ZMPlROJhjd1UiImIzBeFg591MQ0FYHK7ZldYiusrVYPs3Vnu1fVl2VyUiIjZSEA52pUFYrdNEoP7F8NB4iI2DPTutMPzzVrurEhERmygIBztvEFbrNBEA4upYYTiuLuT+Ym3JrI03REQcSUE42B3W1AiR34ipAQ++CHUvPLrxxmOwabndVYmISAVTEA52+dpVTqRMVaKg7xhochkUFcBrwyBzkd1ViYhIBVIQDnaaIyxyYuGR0PMpuPQa8JTAP0fBkg/trkpERCqIgnCwO6wgLHJSoZWg21Bo19l6/OEk7UInIuIQCsLBzts+TYvlRE7I7YZb+8EN91iPP/0nfDDeukosIiJBS0E42HmnRlSxtw4Rf+dyQce/wV8esu5/NQfefhaKC+2uTEREzhIF4WCn9mki5XPlzXDXExASCmuWwLS/a0tmEZEgpSAczIxR+zSR03HJ1dDrWQiLgG9XwuRH4GCu3VWJiMgZpiAczIoKoKTIuq/FciLl07gVPPC81WZt+2aYOAj277a7KhEROYMUhINZ6bQIlxvCK9tbi0ggqtvE2ngj5lzYvR0mDoQ9P9ldlYiInCEKwsHs8HEL5Vwue2sRCVRxda0tmc89z7oiPHEQ7PrB7qpEROQMUBAOZmqdJnJmxNa0rgzXbgAH9sPLabBto91ViYjIH6QgHMxKg3CE5geL/GHVYqHfOKh3sfV765XHrIV0IiISsBSEg9nhA9atOkaInBmRVaHPaGjUCgqPwNQnYN1Su6sSEZHTpCAczPK1vbLIGRceCb2ehmZtra4s05+EzEV2VyUiIqdBQTiYKQiLnB2hYdB9GLS+Djwe+NdoWDrb7qpERKScFISDmRbLiZw9ISHQ9VFoe4u1ec0HE+C/79ldlYiIlIOCcDDLP659moiceW43/Lk/XHen9Xju6/B/06xgLCIifk9BOJh5g7CuCIucNS4X3Hgv3NTLerx4Jvx7gjVlQkRE/JqCcDAr7RqhOcIiZ9+1XeCvA61gvPT/4N1/QEmx3VWJiMhJKAgHM+8cYQVhkQpxxZ/gb0PBHWJ1kpj+FBQV2l2ViIicgIJwMNPUCJGKd+m1cO+TEFoJ1n8F056Agny7qxIRkTIoCAezw2qfJmKLiy+H3qOsnsNbVlm70JX+w1RERPyGgnCwKimBgsPWfU2NEKl4DVtC37FW+8IfN8GkR+Bgrt1ViYjIcRSEg9WR464+6YqwiD3qNoF+46BqDOz8DiY9DHn77K5KRESOUhAOVvmHrNuwCAgJtbcWESdLOB/6vwDR50DWNnh5EOzfbXdVIiKCgnDwUus0Ef8RVwf6vwixcbBnJ7ycBnt32V2ViIjjKQgHK7VOE/EvNRLgwRegRm3Yl2WF4eztdlclIuJoCsLBSq3TRPxPbJw1TSKuLuTutcLwrh/srkpExLEUhIOVpkaI+Kfoc6wwXLsBHMyxFtBt32x3VSIijqQgHKxKF8spCIv4n6rR8MDzVleJwwfglUfhh/V2VyUi4jgKwsEqX1eERfxa5WrQZww0aA5HDsOrQ6zNN0REpMIoCAcrLZYT8X8RlaH3c9C4FRQegamPw8YMu6sSEXEMBeFgla/tlUUCQlgE3Pc0NL0CiovgjRGw9n92VyUi4ggKwsHKu1hOXSNE/F5oGNwzHC65GkqK4a2nIXOR3VWJiAQ9BeFgVbpYTlMjRAJDSCj8bSi0SQWPB/41GpbNs7sqEZGgpiAcrLRYTiTwuEOgy8Nw5c1gDMx8AZZ8aHdVIiJBS0E4WKl9mkhgcrvhtgfh6r9ajz+cBItm2FuTiEiQUhAORsZoQw2RQOZywc29oeNd1uM5r8GCt63f2yIicsYoCAejwiPgKbHuV9ZiOZGA5HLBDd2hU0/r8Sdvw7w3FYZFRM4gBeFgVNo6ze22WjOJSOBK6Qq39LHu//ddmD1VYVhE5Aw5rSA8adIk6tWrR0REBElJSSxfvvyk42fNmkWTJk2IiIigWbNmzJvnuxLaGMPw4cOpVasWkZGRpKSksGXLFp8x+/bto1u3bkRFRRETE0PPnj05ePCgz5i1a9fSrl07IiIiSExMZMyYMb+pJScnh379+lGrVi3Cw8Np1KjRb+oJeMe3TnO57K1FRP64q/9izRsG+HyWNW9YYVhE5A8rdxCeOXMmaWlpjBgxgpUrV9KiRQtSU1PZvXt3meO/+uorunbtSs+ePVm1ahWdO3emc+fOrF+/3jtmzJgxTJgwgSlTppCRkUGVKlVITU3lyJEj3jHdunVjw4YNLFy4kDlz5rBkyRJ69+7tfT0vL4+OHTtSt25dMjMzGTt2LCNHjmTq1KneMYWFhVx33XVs27aNDz74gM2bNzNt2jRq165d3l8G/6bWaSLBp+0tcPsg6x+3//sIZr1ktVkTEZHTZ8qpTZs2pl+/ft7HJSUlJiEhwYwaNarM8bfffrvp1KmTz3NJSUnm/vvvN8YY4/F4THx8vBk7dqz39ZycHBMeHm7ee+89Y4wxGzduNID5+uuvvWPmz59vXC6X2blzpzHGmMmTJ5vY2FhTUFDgHTN48GDTuHFj7+NXXnnFnH/++aawsLC8X9srNzfXACY3N/e0f8ZZt26pMQM7GPPCA3ZXIiJnWsYCYwalWL/H3x1jTEmx3RWJiPidU81r5boiXFhYSGZmJikpKd7n3G43KSkppKenl/me9PR0n/EAqamp3vFbt24lKyvLZ0x0dDRJSUneMenp6cTExNC6dWvvmJSUFNxuNxkZGd4x7du3JywszOdzNm/ezP79+wGYPXs2ycnJ9OvXj7i4OJo2bcpzzz1HSUnJCb9zQUEBeXl5Poff0/bKIsGrTSp0G2KtAVj+Cbw7Bk7yZ5iIiJxYuYLw3r17KSkpIS4uzuf5uLg4srKyynxPVlbWSceX3v7emJo1a/q8HhoaSvXq1X3GlPUzjv+MH374gQ8++ICSkhLmzZvHsGHDGDduHM8888wJv/OoUaOIjo72HomJiScc6zcOKwiLBLVWHeCuv1sbcGQugneetbZmFhGRcnFU1wiPx0PNmjWZOnUqrVq1okuXLjzxxBNMmTLlhO8ZOnQoubm53mPHjh0VWPFp8l4RVus0kaDVsj3cM9zamnnNEnjraSgutLsqEZGAUq4gXKNGDUJCQsjOzvZ5Pjs7m/j4+DLfEx8ff9Lxpbe/N+bXi/GKi4vZt2+fz5iyfsbxn1GrVi0aNWpESEiId8yFF15IVlYWhYVl/wUSHh5OVFSUz+H3vEG4ir11iMjZ1exKuPdJCK0E65bCm09CkcKwiMipKlcQDgsLo1WrVixatMj7nMfjYdGiRSQnJ5f5nuTkZJ/xAAsXLvSOr1+/PvHx8T5j8vLyyMjI8I5JTk4mJyeHzMxM75jFixfj8XhISkryjlmyZAlFRUU+n9O4cWNiY2MBuPLKK/nuu+/wHLfS+ttvv6VWrVo+c4sDXmn7NG2mIRL8LkqC+56BSuGwMQNeH2ZtqiMiIr+r3FMj0tLSmDZtGm+99RabNm2ib9++HDp0iB49egBw9913M3ToUO/4AQMGsGDBAsaNG8c333zDyJEjWbFiBf379wfA5XIxcOBAnnnmGWbPns26deu4++67SUhIoHPnzoB11fb666+nV69eLF++nKVLl9K/f3/uuOMOEhISALjzzjsJCwujZ8+ebNiwgZkzZzJ+/HjS0tK8tfTt25d9+/YxYMAAvv32W+bOnctzzz1Hv379TvsX0C8d0RxhEUdp3Ap6P2ttoLM5E6b9HQry7a5KRMT/nU5LiokTJ5o6deqYsLAw06ZNG7Ns2TLva1dddZXp3r27z/j333/fNGrUyISFhZmLL77YzJ071+d1j8djhg0bZuLi4kx4eLjp0KGD2bx5s8+YX375xXTt2tVUrVrVREVFmR49epgDBw74jFmzZo1p27atCQ8PN7Vr1zajR4/+Te1fffWVSUpKMuHh4eb88883zz77rCkuPvX2QwHRPm3CQKu10srP7K5ERCrS9+uMGXyT9ft//ABj8g/aXZGIiC1ONa+5jNH2ROWRl5dHdHQ0ubm5/jtfeEwv+Hkr9PmHdaVIRJzjx00wZQgcOQR1L4T7R+n/DomI45xqXnNU1wjH0GI5EeeqeyE8MNZaI/DjJpj8GBwKgP7nIiI2UBAORmqfJuJsiY3ggeehSjT89C1MfhQO5thdlYiI31EQDjYlxccWyeh/h4o4V+0G0G8cVIuFXd/DpEcgb5/dVYmI+BUF4WBTejUYFIRFnK5WPej/AkSfA1nbYNLDkLPX7qpERPyGgnCwKQ3C4ZXhuI1DRMShaiZCvxcg5lzYvQMmpcH+7N9/n4iIAygIB5vDWignIr9ybm148EWoHg97d8HLD8MvP9tdlYiI7RSEg03pFWHtKicix6seb02TOLc27MuCl9Ngz067qxIRsZWCcLDJP7q9suYHi8ivxda0pknUrAM5e6wwnL3d7qpERGyjIBxs8g9ZtwrCIlKW6HOg/zhrIV3eL1YY/nmr3VWJiNhCQTjYHD56RVhTI0TkRKrFwgPjrBZrB3OsbhI7v7O7KhGRCqcgHGxK5whHaLGciJxE1WjoO9bafONQnrXpxvbNdlclIlKhFISDjRbLicipqhIFfcdAvYus/5v0yqOwbaPdVYmIVBgF4WBzWIvlRKQcIqvC/aOhQXM4chimDIbv19ldlYhIhVAQDjZaLCci5RVRGXo9Cw0vsbZonzoUtqyyuyoRkbNOQTjYqH2aiJyO8Ei47xlochkUHoFpT8A3X9tdlYjIWaUgHGy8c4QVhEWknMLCoeeTcHEyFBXCa8NhfbrdVYmInDUKwsGmNAhHarGciJyG0DC4Zzg0bwclRfDmSFj7P7urEhE5KxSEg4kxxwVhXREWkdMUWgnu/jtccg14SuCtp2HlZ3ZXJSJyxikIB5OCfPB4rPuaGiEif0RICPxtCLS+zvpz5Z+j4OtP7a5KROSMUhAOJqUL5UJCoVK4vbWISOBzh0DXR+HyG8B44L2xsGy+3VWJiJwxCsLB5PjWaS6XvbWISHBwu+Gvg+DKm63pVzPHwZcf212ViMgZoSAcTLSZhoicDW433PYgXHWb9fjfE+GLf9tbk4jIGaAgHEzUOk1EzhaXC27pAx3usB5/9AosmmFvTSIif5CCcDBR6zQROZtcLujUE1Lvsh7PeQ0+/ae9NYmI/AEKwsFEUyNE5GxzueD67nDjvdbj+dNh3hvW/GERkQCjIBxMShfLaWqEiJxt190JN99v3V/4LvzfVIVhEQk4CsLBJF9XhEWkAl3zV7i1n3X/s1nw4WSFYREJKArCwUS7yolIRWt/K/x1oHX/fx/CrPHHNvYREfFzCsLB5LCCsIjY4Io/wR2PWPOH0+dYvYY9JXZXJSLyuxSEg4l3aoS6RohIBUu6HroNAZcbln8C746BEoVhEfFvCsLBRIvlRMROrTrA3U9YWzNnLoJ3noWSYrurEhE5IQXhYKLFciJit5ZXwT3DISQU1iyBt56G4kK7qxIRKZOCcDApvSKsICwidmp2Jdz7JIRWgnVL4Y2RUKQwLCL+R0E4WBQXQeER676CsIjY7aIkuO8ZqBQOm5bDa8OO/RklIuInFISDRWnrNIDIKvbVISJSqnEr6P0shEXAt5kw7QkoyLe7KhERLwXhYFEahCMqWwtVRET8wQUt4f7REF4ZvlsDrw6BI4fsrkpEBFAQDh6H1TpNRPzU+U2h7z8gogps3QBTBvv+XywREZsoCAeL0r9U1DpNRPxR3QvhgeehcjX48RuY/CgcyrW7KhFxOAXhYKHtlUXE3yU2hH7joGoM/LTFCsMH9ttdlYg4mIJwsPAGYU2NEBE/lnC+FYarVYddP8CkRyD3F7urEhGHUhAOFodLg7A6RoiIn4uvC/1fgOgakP0jTHoYcvbaXZWIOJCCcLDwzhHWFWERCQA1z7PCcGxN2PMTvDwI9mXbXZWIOIyCcLDQ9soiEmhqJED/F+GcWvDLzzBxoBWKRUQqiIJwsDisxXIiEoCqx1lhuGYdyNkDEwfBz1vtrkpEHEJBOFhoaoSIBKqYGtB/HCQ0sLpIvJwGO761uyoRcQAF4WDh3VlOi+VEJABVi4V+z0PdJtYGQZMfgR/W212ViAQ5BeFgoSvCIhLoKleDPmOgQXM4ctjajvnblXZXJSJBTEE4WGhDDREJBhGVofdz0KQ1FB6BaU/A+nS7qxKRIKUgHAw8Hsg/ZN1XEBaRQBcWAT2fgmZtobgI3hwJqz63uyoRCUIKwsGg4DAYj3VfQVhEgkFoGHQfBq06gKcE3nkOln9id1UiEmQUhINB6bSI0EoQFm5vLSIiZ0pICNz5GFx+o/WP/ffGwpcf212ViAQRBeFg4J0frIVyIhJk3CFw+yBo/2fr8b8nwqKZ9tYkIkFDQTgYaDMNEQlmLhd07gvX3Wk9njMN5k8HY2wtS0QCn4JwMPC2TlMQFpEg5XLBjfdCp57W40//CbNfVRgWkT9EQTgY5B+wbnVFWESCXUpXuLWfdf/zD2DWeKtzjojIaVAQDgZqnSYiTtL+VrjjYesqcfoceG8MlJTYXZWIBCAF4WBwWFeERcRhkm6Avz0Objes+C+8/bTVc1hEpBwUhIOB5giLiBNdeg3cMwJCKsHaL+H14dZudCIip0hBOBiofZqIOFWzK6HXM9ZudN98DVMGH/szUUTkdygIBwNNjRARJ2vcCvr8AyKqwNYNMOlhOLDf7qpEJAAoCAeD0sVymhohIk5V/2Lo/wJUi4Wd38PEgbA/2+6qRMTPKQgHA7VPExGB2g3gwRchNg727IQJAyF7u91ViYgfUxAOBtpZTkTEcu558NBLULMO5OyBiYNgxxa7qxIRP6UgHAyOKAiLiHjFnGtdGT6vERzKteYMf7/W7qpExA8pCAe6okLrAKisrhEiIgBUjYZ+Y6FBcyg4DK8OgQ3L7K5KRPyMgnCgK20T5HJBeGV7axER8ScRVaD3KLg42bpg8MYIWLnY7qpExI8oCAe60oVyEVWsHZZEROSYsHDoMQJadQBPCfxzFCydbXdVIuInTis5TZo0iXr16hEREUFSUhLLly8/6fhZs2bRpEkTIiIiaNasGfPmzfN53RjD8OHDqVWrFpGRkaSkpLBli+/ihn379tGtWzeioqKIiYmhZ8+eHDzo2zR97dq1tGvXjoiICBITExkzZswJa5oxYwYul4vOnTuX78v7m9LWaZofLCJStpBQuHMwtL0FjIEPJsB/37Xui4ijlTsIz5w5k7S0NEaMGMHKlStp0aIFqamp7N69u8zxX331FV27dqVnz56sWrWKzp0707lzZ9avX+8dM2bMGCZMmMCUKVPIyMigSpUqpKamcuTIsa0yu3XrxoYNG1i4cCFz5sxhyZIl9O7d2/t6Xl4eHTt2pG7dumRmZjJ27FhGjhzJ1KlTf1PTtm3beOSRR2jXrl15v77/0WYaIiK/z+2GP/eH67pZj+e+Af83TWFYxOlMObVp08b069fP+7ikpMQkJCSYUaNGlTn+9ttvN506dfJ5Likpydx///3GGGM8Ho+Jj483Y8eO9b6ek5NjwsPDzXvvvWeMMWbjxo0GMF9//bV3zPz5843L5TI7d+40xhgzefJkExsbawoKCrxjBg8ebBo3buzz2cXFxeaKK64wr732munevbu55ZZbyvX9c3NzDWByc3PL9b6zZsV/jRnYwZhJj9hdiYhIYPhslvXn5sAOxsx43piSYrsrEpEz7FTzWrmuCBcWFpKZmUlKSor3ObfbTUpKCunp6WW+Jz093Wc8QGpqqnf81q1bycrK8hkTHR1NUlKSd0x6ejoxMTG0bt3aOyYlJQW3201GRoZ3TPv27QkLC/P5nM2bN7N//7GtNp966ilq1qxJz549T+k7FxQUkJeX53P4ldLFcpFV7K1DRCRQXP0XuONhcLlh2Xx4+1koLrS7KhGxQbmC8N69eykpKSEuLs7n+bi4OLKyssp8T1ZW1knHl97+3piaNWv6vB4aGkr16tV9xpT1M47/jC+//JLXX3+dadOmndoXBkaNGkV0dLT3SExMPOX3Vgjv1Ai1ThMROWVJN0D3v0NIJVizBKY+AUcO2V2ViFQwx7QZOHDgAHfddRfTpk2jRo0ap/y+oUOHkpub6z127NhxFqs8DaWL5SprjrCISLm0aA+9n4XwSNiyCiY9Agf2//77RCRolCsI16hRg5CQELKzs32ez87OJj4+vsz3xMfHn3R86e3vjfn1Yrzi4mL27dvnM6asn1H62vfff8+2bdu46aabCA0NJTQ0lLfffpvZs2cTGhrK999/X2b94eHhREVF+Rx+JV+L5URETlujS6HfOKgaAz9tgQkDYO8uu6sSkQpSriAcFhZGq1atWLRokfc5j8fDokWLSE5OLvM9ycnJPuMBFi5c6B1fv3594uPjfcbk5eWRkZHhHZOcnExOTg6ZmZneMYsXL8bj8ZCUlOQds2TJEoqKinw+p3HjxsTGxtKkSRPWrVvH6tWrvcfNN9/MNddcw+rVq/1vysOpytf2yiIif0hiI3joJageb4XgCQNh53d2VyUiFaDcUyPS0tKYNm0ab731Fps2baJv374cOnSIHj16AHD33XczdOhQ7/gBAwawYMECxo0bxzfffMPIkSNZsWIF/fv3B8DlcjFw4ECeeeYZZs+ezbp167j77rtJSEjw9vi98MILuf766+nVqxfLly9n6dKl9O/fnzvuuIOEhAQA7rzzTsLCwujZsycbNmxg5syZjB8/nrS0NAAiIiJo2rSpzxETE0O1atVo2rSpzyK7gHJYQVhE5A879zx4aDwkNIAD++DlNPhutd1VichZFlreN3Tp0oU9e/YwfPhwsrKyaNmyJQsWLPAuTNu+fTvu43Y4u+KKK3j33Xf5+9//zuOPP07Dhg356KOPaNq0qXfMY489xqFDh+jduzc5OTm0bduWBQsWEBER4R3zr3/9i/79+9OhQwfcbje33XYbEyZM8L4eHR3Np59+Sr9+/WjVqhU1atRg+PDhPr2Gg1Lp1IjKWiwnIvKHRJ8D/cfB68Ph+7UwZSjc/Tg0D4Ke8yJSJpcx6iZeHnl5eURHR5Obm+sf84Wf/hvsy4IBE6DeRXZXIyIS+IoK4Z/PwdovrRZrf3kIrviT3VWJSDmcal5zTNeIoKWd5UREzqxKYdB9GCR3AuOBWS/BJ+9oFzqRIKQgHMg8Hig4bN3X1AgRkTPHHQJ/HQgd77IeL3gL/j0RPCW2liUiZ5aCcCA7cujYFQrtLCcicma5XHBDd7jtQev+0tnahU4kyCgIB7LS1mmVwiE0QLteiIj4u7a3wN3ahU4kGCkIBzK1ThMRqRgtr4L7nzu2C93EQZCz1+6qROQPUhAOZNpVTkSk4jS8BPq9ANWqw64fYPyD8PM2u6sSkT9AQTiQaVc5EZGKldgQBk6AmomQs8faklkbb4gELAXhQFYahCsrCIuIVJjq8dYudPUvtuYKTxkKKz+zuyoROQ0KwoHMe0VYrdNERCpUlSjoO9bada6kCN55Fj57X72GRQKMgnAg8y6WU+s0EZEKV7rxRvs/W49nT4UPJ6nXsEgAURAOZN6pEboiLCJiC7cbbn0AbuljPf7fRzD9aSgssLUsETk1CsKBTF0jRET8w9V/OdZreN2X8MqjcDDX7qpE5HcoCAcy9REWEfEfl1wNff9h/Zm8baPVUWLvLrurEpGTUBAOZJoaISLiXxo0tzpKxNaEPT/B+Idg+zd2VyUiJ6AgHMjytVhORMTvxNeFAROgdgM4mAMvPwxrv7S7KhEpg4JwIFP7NBER/xRdA/q/AE0ug6ICmP6k2quJ+CEF4UBljOYIi4j4s4gqcN8zcOVN1p/Zs6fCrPFQUmx3ZSJylIJwoCoqtJq4g3aWExHxVyEhcNtD0LkvuFyQPgemPXHs/+iJiK0UhANVaes0lxvCIu2tRURETszlgqtug3ufhLAI2JwJEwbCvmy7KxNxPAXhQHX8rnJunUYREb/X9Apr3nDUOZC1DV7qDz+qo4SInZSgApVap4mIBJ7ERjDoZUhoAAf2w6Q0WLPE7qpEHEtBOFCVBuEIzQ8WEQkoMefCgy/CRUnWeo/pT8GimeooIWIDBeFA5b0irCAsIhJwIirDvU9Bu87W4znT4P0X1FFCpIIpCAeqw0cXy6l1mohIYAoJgT/3h1v7WQufl82HKUPgUK7dlYk4hoJwoDpyyLpVEBYRCWztb4WeT0F4JHy3Gl7sD1k/2l2ViCMoCAcqXREWEQkeF19ubctcPR5++RleehA2ZthdlUjQUxAOVJojLCISXGrVh0GToEFzKDgMr/1d2zKLnGUKwoGqNAhHqn2aiEjQqBoNff4ByZ2Obcv87hiru4SInHEKwoFKUyNERIJTaCX460BrIZ3bDSsWwuRHIG+f3ZWJBB0F4UCVf3SxnKZGiIgEH5fLaq3We5R1wWPbRnixH/y0xe7KRIKKgnCgytcVYRGRoNe4FQx8GWomQs4emDgIVmsnOpEzRUE4UGmOsIiIM9Q8DwZOhCatofAIvPUUzH8LPB67KxMJeArCgchTAkcOW/cjq9hbi4iInH2RVeG+Z+Gq26zHn74Drw8/dlFERE6LgnAgOv4Pvsq6Iiwi4gghIdC5L3R9zFpQt3GZNW9Ym2+InDYF4UBUulAuLAJCQu2tRUREKlabjvDQeIitCXt2wkv9Ye3/7K5KJCApCAcitU4TEXG2xEaQNhkuaAkF+fDmkzD3dWvqnIicMgXhQKRd5UREpGqMtfnG1X+xHv/3PZj292MXS0TkdykIB6LSIByhICwi4mghIXBLH/jbUKgUDt98DS88ALt+sLsykYCgIByISv+1r4VyIiIC0KoDDBgP1ePhl59h/EOw6jO7qxLxewrCgah0sZxap4mISKnaF0DaJGjUyuo3/Paz8OFkKC6yuzIRv6UgHIi8u8rpirCIiBynSjTc/xxc28V6vOQ/MOlha1c6EfkNBeFApMVyIiJyIu4QuKkX3PskRFSBbRvh+T6wOdPuykT8joJwIPJur6wgLCIiJ9DsSnj4FWvKxKFceHUIfPKOtmYWOY6CcCDyBmFNjRARkZOokQADJsDlN4IxsOAtmPY4HMy1uzIRv6AgHIgOlwZhLZYTEZHfUSkMuqRZWzNXCodvVsC4PtaUCRGHUxAORPlqnyYiIuXUpiMMnAjn1rYWz00cBEs+tK4UiziUgnAg8rZP0xxhEREph4Tzra2ZW7S3tmP+cJK1PfOhPLsrE7GFgnCgMebYhhoKwiIiUl4RVaD7MLi1H4SEwrovrakSP6y3uzKRCqcgHGgKj1j/igdNjRARkdPjckH7W62FdDVqw/7dMCkNFr577O8YEQdQEA40pR0j3G4Ii7C3FhERCWyJjawWa606WG3V5r0BU4ZA7i92VyZSIRSEA83xrdNcLntrERGRwBdRGboNga6PWhdYtqyC5++HTcvtrkzkrFMQDjSHtZmGiIicYS4XtEm1FtIlNICDOTD1cZg9FYqL7K5O5KxREA403tZpCsIiInKGxdWxWqy1vcV6/Nn7Vpu1vbvsrUvkLFEQDjSlUyMiFIRFROQsqBQGtz0IPUZai7K3fwNje8Oy+eo5LEFHQTjQlE6N0BVhERE5m5q3hUemQIPmVseimePgzZHWtAmRIKEgHGiOXywnIiJyNsXGwQNj4aZeR3sOL4UxvbSQToKGgnCg8QbhKvbWISIizuAOgWu7wKCXIa4uHNhvLaT790TrSrFIAFMQDjSlQVibaYiISEWqfYHVVaL9n63HX34M4x6AHVvsrUvkD1AQDjT52l5ZRERsEhYOtz4Aff4B0efA7u3wUn9rR7oS7UgngUdBONCoj7CIiNitcSt4dCo0b2dtyTzvDZjwEGT9aHdlIuWiIBxo8hWERUTED1SJhnuGw52Drb+Ttm+G5/vAf9/T1WEJGArCgSZf7dNERMRPuFxw2XUw+DW4KAlKimDu6zBhgK4OS0BQEA40ap8mIiL+JroG3PcMdH0MIqpYm3CM6wOLZujqsPg1BeFAUlIMBfnWfU2NEBERf+JyQZuOMPh1uLANFBfBnNdg4gDI3m53dSJlUhAOJPmHjt1XEBYREX8UUwN6PQt3PAIRleHHb+D5+492lii2uzoRHwrCgaS0dVp4JISE2FuLiIjIibhckHS9dXW4yWXW1eF5b8C4vvDjJrurE/E6rSA8adIk6tWrR0REBElJSSxffvKtFmfNmkWTJk2IiIigWbNmzJs3z+d1YwzDhw+nVq1aREZGkpKSwpYtvg269+3bR7du3YiKiiImJoaePXty8OBBnzFr166lXbt2REREkJiYyJgxY3xenzZtGu3atSM2NpbY2FhSUlJ+t3a/otZpIiISSGLOhd7PWZ0lqkTBz1th/EPwn5fhyGG7qxMpfxCeOXMmaWlpjBgxgpUrV9KiRQtSU1PZvXt3meO/+uorunbtSs+ePVm1ahWdO3emc+fOrF+/3jtmzJgxTJgwgSlTppCRkUGVKlVITU3lyJFjWzd269aNDRs2sHDhQubMmcOSJUvo3bu39/W8vDw6duxI3bp1yczMZOzYsYwcOZKpU6d6x3z++ed07dqVzz77jPT0dBITE+nYsSM7d+4s7y+DPdQ6TUREAk1pZ4khb0LrFDAG/vcR/KMnbFhmd3XidKac2rRpY/r16+d9XFJSYhISEsyoUaPKHH/77bebTp06+TyXlJRk7r//fmOMMR6Px8THx5uxY8d6X8/JyTHh4eHmvffeM8YYs3HjRgOYr7/+2jtm/vz5xuVymZ07dxpjjJk8ebKJjY01BQUF3jGDBw82jRs3PuF3KS4uNtWqVTNvvfXWqX59k5ubawCTm5t7yu85Y1YuNmZgB2MmDqr4zxYRETkTvllhzFPdrL/PBnYwZvpTxuT+YndVEmRONa+V64pwYWEhmZmZpKSkeJ9zu92kpKSQnp5e5nvS09N9xgOkpqZ6x2/dupWsrCyfMdHR0SQlJXnHpKenExMTQ+vWrb1jUlJScLvdZGRkeMe0b9+esLAwn8/ZvHkz+/fvL7O2w4cPU1RURPXq1cvzy2Cf0sVyuiIsIiKBqnErq+/wNbeD2w2rv4DR98LS2dYudSIVqFxBeO/evZSUlBAXF+fzfFxcHFlZWWW+Jysr66TjS29/b0zNmjV9Xg8NDaV69eo+Y8r6Gcd/xq8NHjyYhISE3wT14xUUFJCXl+dz2Obw0cVyCsIiIhLIwiLg5t4waBKc18ia+vfBBHixvxbTSYVybNeI0aNHM2PGDD788EMiIiJOOG7UqFFER0d7j8TExAqs8lc0R1hERILJeQ1h0ES47UFrI46ftsBLD8LMcXAw1+7qxAHKFYRr1KhBSEgI2dnZPs9nZ2cTHx9f5nvi4+NPOr709vfG/HoxXnFxMfv27fMZU9bPOP4zSj3//POMHj2aTz/9lObNm5/0Ow8dOpTc3FzvsWPHjpOOP6sUhEVEJNi4Q6DtLfD4dLiso/Xcsvkw6h74ao6mS8hZVa4gHBYWRqtWrVi0aJH3OY/Hw6JFi0hOTi7zPcnJyT7jARYuXOgdX79+feLj433G5OXlkZGR4R2TnJxMTk4OmZmZ3jGLFy/G4/GQlJTkHbNkyRKKiop8Pqdx48bExsZ6nxszZgxPP/00CxYs8JlzfCLh4eFERUX5HLYpnRpRWdsri4hIkKkWC3c+Bg++CAnnW3/nzXrJukK8/Ru7q5NgVd5VeDNmzDDh4eFm+vTpZuPGjaZ3794mJibGZGVlGWOMueuuu8yQIUO845cuXWpCQ0PN888/bzZt2mRGjBhhKlWqZNatW+cdM3r0aBMTE2M+/vhjs3btWnPLLbeY+vXrm/z8fO+Y66+/3lxyySUmIyPDfPnll6Zhw4ama9eu3tdzcnJMXFycueuuu8z69evNjBkzTOXKlc2rr77q8zlhYWHmgw8+MD///LP3OHDgwCl/f1u7Rkx+zFphu/yTiv9sERGRilJcbMwX/zFmyE3W33uDUox5d4wxOXvsrkwCxKnmtXIHYWOMmThxoqlTp44JCwszbdq0McuWLfO+dtVVV5nu3bv7jH///fdNo0aNTFhYmLn44ovN3LlzfV73eDxm2LBhJi4uzoSHh5sOHTqYzZs3+4z55ZdfTNeuXU3VqlVNVFSU6dGjx28C7Jo1a0zbtm1NeHi4qV27thk9erTP63Xr1jXAb44RI0ac8ne3NQiP62v9gbDuq4r/bBERkYqWs9eYd0Yda7X2WCdjPnnHmIIjdlcmfu5U85rLGGNsuxwdgPLy8oiOjiY3N7fip0k82x327rT+t9H5zSr2s0VEROyybSN8NBl+PDpFIrYm/KkXXHK1tWGHyK+cal5zbNeIgJSv9mkiIuJA9S6CARPhb0OtbZv374Z3noUJA4+FY5HToCAcKIw5rmuEFsuJiIjDuFzQqgMMfRNuuMfqRbxtA7zUH95+FvbusrtCCUAKwoGiIB88Hut+ZBV7axEREbFLWAR0/BsMnX6s3dqqz2BUD/j3RDhQ9m6yImVREA4UpdMiQkKtPwREREScLKaG1W7t4VegSWur3/CXH8Mzd8H86XDkkN0VSgBQEA4U+Ud/Q0dW1cIAERGRUuc1hPtHwwPPQ50mUHgEPv0nPHM3fPEfKC60u0LxYwrCgeKwFsqJiIicUMOWMHAi3DMczj0PDuVanSaeu8faoa646Pd+gjiQgnCgKF0oV1lBWEREpEwuF7RoD4Nfh78OhOhzrA4Ts16yAnH6XAVi8aEgHCi8HSMUhEVERE4qJASu+BM8/jZ0fgCqVYf92fD+i9aiumXzoKTY7irFDygIBwrv1Ai1ThMRETklYeFw1Z/h7+9A575QLRb2ZcHMF6wrxMvm6wqxwykIBwrvYjm1ThMRESmXsHC46rYyAvE4ePZu+PwDq02pOI6CcKAobZ9WWVeERURETktYxLFAfEsfiDoHcvbAx1PgqTuttmsHc+yuUipQqN0FyCkqnSMcoTnCIiIif0hYBFz9F2h7M6z4Lyx+H/b8ZLVd+2wWJF0P1/wVqsfbXamcZQrCgeKwukaIiIicUaFhcPmN0CYV1i2FxTNh+2ZrY46v/s/qQNH+z1D3QvXwD1IKwoHC2zVCUyNERETOKHeIFXqbt4PvVsOiGbA5E1Z9bh11GluBuEV7CK1kc7FyJikIBwpvENZiORERkbPC5YKGl1jHzu9hyX9g5WLrKvE/R8HHr8KVN1mt2arF2l2tnAEKwoFCi+VEREQqTu0G0PVRuKmXtRHH0tmQ+wsseAsWvgst2kFyJ2jQXNMmApiCcKDwtk/THGEREZEKUzUGrusG13aBNUusq8Q/fmNdKV65GGomWvOML+sIVaPtrlbKSUE4EBQXQeER676CsIiISMULCYVLr7WOHd9aV4lXLobdO2D2qzD3DWjRFi4/epXYrQ61gUBBOBCUzg8GzREWERGxW2Ij67j5flj1GXw1F376FlZ+Zh2xcdA6BVpfBzXPs7taOQkF4UDg7SFc2VrZKiIiIvaLqGzNE07udOwq8arPYH82LPyXddRtYgXiS66GKpo64W8UhAOBWqeJiIj4t9KrxJ0fgA1fwdcLYfMKaz7xj9/AR6/AhZdBi6vg4ss11dFPKAgHgsNHO0boN42IiIh/CwuHS66xjgP7rakSKxbCT1tgfbp1hFSCxq2gZXtoeoX+freRgnAgyNeuciIiIgGnWixc9Wfr+HkbrP4C1nwB2dth4zLrCAmFRpdam3lc2Aaiz7G7akdREA4E3qkRCsIiIiIBqVY967ihuxWK1yyxjqxtsGm5dQCc1wguToKLLofzGqr7xFmmIBwIDisIi4iIBI3SUHz93ZD9I6z5H2xYBtu/sbpP/PQtfPKOdUX5oiRo3BoatrR6GssZpSAcCLxTI7RYTkREJKjE1YWOdaHj3yBvn3VleGOGtdDuwH7IWGAdAAnnH9sCukEziFBL1T9KQTgQ5GuxnIiISNCLqg5J11tHcRF8v9YKxltWwa4fjh1f/NuaMlGnCdS/GOpdDPUust4v5aIgHAi0vbKIiIizhB7tLNG4lfX4wH74bjVsWW0F4727YNtG62CWNaZ6vBWI610EdS+EhPoQGmbTFwgMCsKBQO3TREREnK1a7LG2bAD7suG7NUfD8AZr0d2+LOtYudga4w6BuDpQuwHUvsA6Es6HKlG2fQ1/oyAcCNQ1QkRERI5XPQ7adLQOgCOHrI07SoPx9s3WhbSft1rHiv8ee2/MuXDueVAz8ehxHtSsYz3vsC4VCsKBQEFYRERETiaiiu9UCmMgZw/s/B52fQ8/fQc7v7OuGOfssY4tq3x/RmgliK0JsXHH3R69HxVrda2IrBZUYVlB2J8VHoGtG+CXn63H6hohIiIip8LlOhpma0LT5GPP5x+0NvTYvePo8ZN1u3entUBvz07rOBG3G6rEQLWYo8G4KoRHWkE8PBLCK0NEZWuHvZBKEBoK7lDrNjbOmqrhRxSE/VnePpgy+NhjBWERERH5IyKrHltQd7ySEsjZDft3w/7sY7f7dlvPH8yxplp4PHBgn3WU15U3wV8GnJGvcaYoCPuzkFCoVd+6f35Ta6K8iIiIyJkWEgLn1LKOEykugkO5Vig+kGPdHjlkHQX5cOSwdRQchqICK1wXF0FJMZQUQUzNCvoyp05B2J/F1oTHptldhYiIiIg1hzi6hnUEieCZ7SwiIiIiUg4KwiIiIiLiSArCIiIiIuJICsIiIiIi4kgKwiIiIiLiSArCIiIiIuJICsIiIiIi4kgKwiIiIiLiSArCIiIiIuJICsIiIiIi4kgKwiIiIiLiSArCIiIiIuJICsIiIiIi4kgKwiIiIiLiSKF2FxBojDEA5OXl2VyJiIiIiJSlNKeV5rYTURAupwMHDgCQmJhocyUiIiIicjIHDhwgOjr6hK+7zO9FZfHh8XjYtWsX1apVw+VyndXPysvLIzExkR07dhAVFXVWP0vOHp3HwKdzGPh0DoODzmPgq6hzaIzhwIEDJCQk4HafeCawrgiXk9vt5rzzzqvQz4yKitJv+CCg8xj4dA4Dn85hcNB5DHwVcQ5PdiW4lBbLiYiIiIgjKQiLiIiIiCMpCPux8PBwRowYQXh4uN2lyB+g8xj4dA4Dn85hcNB5DHz+dg61WE5EREREHElXhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSE/dikSZOoV68eERERJCUlsXz5crtLcqwlS5Zw0003kZCQgMvl4qOPPvJ53RjD8OHDqVWrFpGRkaSkpLBlyxafMfv27aNbt25ERUURExNDz549OXjwoM+YtWvX0q5dOyIiIkhMTGTMmDFn+6s5wqhRo7jsssuoVq0aNWvWpHPnzmzevNlnzJEjR+jXrx/nnHMOVatW5bbbbiM7O9tnzPbt2+nUqROVK1emZs2aPProoxQXF/uM+fzzz7n00ksJDw/nggsuYPr06Wf76znGK6+8QvPmzb2N+JOTk5k/f773dZ3DwDN69GhcLhcDBw70Pqfz6N9GjhyJy+XyOZo0aeJ9PeDOnxG/NGPGDBMWFmbeeOMNs2HDBtOrVy8TExNjsrOz7S7NkebNm2eeeOIJ85///McA5sMPP/R5ffTo0SY6Otp89NFHZs2aNebmm2829evXN/n5+d4x119/vWnRooVZtmyZ+d///mcuuOAC07VrV+/rubm5Ji4uznTr1s2sX7/evPfeeyYyMtK8+uqrFfU1g1Zqaqp58803zfr1683q1avNjTfeaOrUqWMOHjzoHdOnTx+TmJhoFi1aZFasWGEuv/xyc8UVV3hfLy4uNk2bNjUpKSlm1apVZt68eaZGjRpm6NCh3jE//PCDqVy5sklLSzMbN240EydONCEhIWbBggUV+n2D1ezZs83cuXPNt99+azZv3mwef/xxU6lSJbN+/XpjjM5hoFm+fLmpV6+ead68uRkwYID3eZ1H/zZixAhz8cUXm59//tl77Nmzx/t6oJ0/BWE/1aZNG9OvXz/v45KSEpOQkGBGjRplY1VijPlNEPZ4PCY+Pt6MHTvW+1xOTo4JDw837733njHGmI0bNxrAfP31194x8+fPNy6Xy+zcudMYY8zkyZNNbGysKSgo8I4ZPHiwady48Vn+Rs6ze/duA5gvvvjCGGOdr0qVKplZs2Z5x2zatMkAJj093Rhj/WPI7XabrKws75hXXnnFREVFec/ZY489Zi6++GKfz+rSpYtJTU0921/JsWJjY81rr72mcxhgDhw4YBo2bGgWLlxorrrqKm8Q1nn0fyNGjDAtWrQo87VAPH+aGuGHCgsLyczMJCUlxfuc2+0mJSWF9PR0GyuTsmzdupWsrCyf8xUdHU1SUpL3fKWnpxMTE0Pr1q29Y1JSUnC73WRkZHjHtG/fnrCwMO+Y1NRUNm/ezP79+yvo2zhDbm4uANWrVwcgMzOToqIin3PYpEkT6tSp43MOmzVrRlxcnHdMamoqeXl5bNiwwTvm+J9ROka/b8+8kpISZsyYwaFDh0hOTtY5DDD9+vWjU6dOv/m11nkMDFu2bCEhIYHzzz+fbt26sX37diAwz5+CsB/au3cvJSUlPv+RAMTFxZGVlWVTVXIipefkZOcrKyuLmjVr+rweGhpK9erVfcaU9TOO/wz54zweDwMHDuTKK6+kadOmgPXrGxYWRkxMjM/YX5/D3zs/JxqTl5dHfn7+2fg6jrNu3TqqVq1KeHg4ffr04cMPP+Siiy7SOQwgM2bMYOXKlYwaNeo3r+k8+r+kpCSmT5/OggULeOWVV9i6dSvt2rXjwIEDAXn+Qs/oTxMR8XP9+vVj/fr1fPnll3aXIqehcePGrF69mtzcXD744AO6d+/OF198YXdZcop27NjBgAEDWLhwIREREXaXI6fhhhtu8N5v3rw5SUlJ1K1bl/fff5/IyEgbKzs9uiLsh2rUqEFISMhvVllmZ2cTHx9vU1VyIqXn5GTnKz4+nt27d/u8XlxczL59+3zGlPUzjv8M+WP69+/PnDlz+OyzzzjvvPO8z8fHx1NYWEhOTo7P+F+fw987PycaExUVFZB/QfijsLAwLrjgAlq1asWoUaNo0aIF48eP1zkMEJmZmezevZtLL72U0NBQQkND+eKLL5gwYQKhoaHExcXpPAaYmJgYGjVqxHfffReQvw8VhP1QWFgYrVq1YtGiRd7nPB4PixYtIjk52cbKpCz169cnPj7e53zl5eWRkZHhPV/Jycnk5OSQmZnpHbN48WI8Hg9JSUneMUuWLKGoqMg7ZuHChTRu3JjY2NgK+jbByRhD//79+fDDD1m8eDH169f3eb1Vq1ZUqlTJ5xxu3ryZ7du3+5zDdevW+fyDZuHChURFRXHRRRd5xxz/M0rH6Pft2ePxeCgoKNA5DBAdOnRg3bp1rF692nu0bt2abt26ee/rPAaWgwcP8v3331OrVq3A/H14xpffyRkxY8YMEx4ebqZPn242btxoevfubWJiYnxWWUrFOXDggFm1apVZtWqVAcwLL7xgVq1aZX788UdjjNU+LSYmxnz88cdm7dq15pZbbimzfdoll1xiMjIyzJdffmkaNmzo0z4tJyfHxMXFmbvuususX7/ezJgxw1SuXFnt086Avn37mujoaPP555/7tPw5fPiwd0yfPn1MnTp1zOLFi82KFStMcnKySU5O9r5e2vKnY8eOZvXq1WbBggXm3HPPLbPlz6OPPmo2bdpkJk2apJZNZ9CQIUPMF198YbZu3WrWrl1rhgwZYlwul/n000+NMTqHger4rhHG6Dz6u4cffth8/vnnZuvWrWbp0qUmJSXF1KhRw+zevdsYE3jnT0HYj02cONHUqVPHhIWFmTZt2phly5bZXZJjffbZZwb4zdG9e3djjNVCbdiwYSYuLs6Eh4ebDh06mM2bN/v8jF9++cV07drVVK1a1URFRZkePXqYAwcO+IxZs2aNadu2rQkPDze1a9c2o0ePrqivGNTKOneAefPNN71j8vPzzQMPPGBiY2NN5cqVza233mp+/vlnn5+zbds2c8MNN5jIyEhTo0YN8/DDD5uioiKfMZ999plp2bKlCQsLM+eff77PZ8gfc++995q6deuasLAwc+6555oOHTp4Q7AxOoeB6tdBWOfRv3Xp0sXUqlXLhIWFmdq1a5suXbqY7777zvt6oJ0/lzHGnPnrzCIiIiIi/k1zhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJEUhEVERETEkRSERURERMSRFIRFRERExJH+H7e4rPYTpc+9AAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAHDCAYAAADRBFkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMDklEQVR4nO3deXgUVb7G8bezdCcsSVizETZFkF1ZIggCEo2KsqgIDAoi48KgojiOcOcK4p0BlxmGURFGJ6DjxiYyKIhAABVFURAhAgFlFUjYEwiQQPe5fxQ0NAlCQpLqdL6f5+knVadPVX5ljfhOUecchzHGCAAAACjjguwuAAAAACgOBFsAAAAEBIItAAAAAgLBFgAAAAGBYAsAAICAQLAFAABAQCDYAgAAICAQbAEAABAQCLYAAAAICARbAAAABASCLQBcgm3btsnhcOitt96y5fe/9dZbcjgc2rZtmy2/HwDKAoItAPiRsWPHas6cOXaXobvuuku33Xab3WUAQKEQbAHAj1wo2N533306fvy46tSpU+I1nDx5UosWLVK3bt1K/HcBQHEKsbsAAMDFBQcHKzg4uFR+15dffqkjR44QbAGUOTyxBVAm7dq1Sw888ICio6PlcrnUpEkTTZkyRZKUmZmpkJAQjRkzJt9x6enpcjgceu211yRJBw8e1B//+Ec1a9ZMlSpVUkREhG699Vb9+OOPF62hc+fO6ty5c772+++/X3Xr1vVp+9vf/qb27durWrVqCg8PV6tWrTRr1iyfPg6HQzk5OXr77bflcDjkcDh0//33S7rwO7avv/66mjRpIpfLpbi4OA0dOlSHDx/OV2fTpk21fv16denSRRUqVFB8fLxeeumlAq9r3rx5aty4sfca1q5dq/vvv1/169dXWFiYYmJi9MADD+jAgQP5jt21a5cGDx6suLg4uVwu1atXT0OGDFFeXp63z+HDh/Xkk0+qbt26crlcqlWrlgYMGKD9+/cXWA8AXCqe2AIoczIzM3XdddfJ4XDo0UcfVY0aNfTpp59q8ODBys7O1hNPPKFOnTppxowZGj16tM+x06dPV3BwsHr37i1J2rJli+bMmaPevXurXr16yszM1L/+9S916tRJ69evV1xcXLHU/M9//lPdu3dX//79lZeXp2nTpql379765JNPvE9G33nnHf3+979X27Zt9dBDD0mSrrjiigue87nnntOYMWOUlJSkIUOGKD09XZMmTdJ3332nr776SqGhod6+hw4d0i233KI777xT99xzj2bNmqVnnnlGzZo106233upz3vnz5+v222/37i9atEhbtmzRoEGDFBMTo59++klvvPGGfvrpJ33zzTdyOBySpN27d6tt27Y6fPiwHnroITVq1Ei7du3SrFmzdOzYMTmdTh09elQdO3bUhg0b9MADD+jaa6/V/v37NXfuXP3666+qXr16sfzzBlBOGQAoYwYPHmxiY2PN/v37fdr79u1rIiMjzbFjx8y//vUvI8msW7fOp0/jxo3NjTfe6N0/ceKEcbvdPn22bt1qXC6Xef75533aJJmpU6d62zp16mQ6deqUr76BAweaOnXq+LQdO3bMZz8vL880bdrUpxZjjKlYsaIZOHBgvnNOnTrVSDJbt241xhizd+9e43Q6zc033+xT/2uvvWYkmSlTpvjUKcn85z//8bbl5uaamJgYc9ddd/n8ni1bthhJZunSpRes3RhjPvjgAyPJfPHFF962AQMGmKCgIPPdd9/l6+/xeIwxxowaNcpIMrNnz75gHwAoKl5FAFCmGGP04Ycf6o477pAxRvv37/d+kpOTlZWVpdWrV+vOO+9USEiIpk+f7j02LS1N69evV58+fbxtLpdLQUHWH4Vut1sHDhxQpUqV1LBhQ61evbrY6g4PD/duHzp0SFlZWerYsWORf8fixYuVl5enJ554wlu/JD344IOKiIjQvHnzfPpXqlRJ9957r3ff6XSqbdu22rJli0+/efPmKTIyUh06dCiw9hMnTmj//v267rrrJMlbv8fj0Zw5c3THHXeodevW+eo981T3ww8/VIsWLdSrV68L9gGAoiLYAihT9u3bp8OHD+uNN95QjRo1fD6DBg2SJO3du1fVq1dX165dNWPGDO+x06dPV0hIiO68805vm8fj0T/+8Q81aNBALpdL1atXV40aNbR27VplZWUVW92ffPKJrrvuOoWFhalq1aqqUaOGJk2aVOTfsX37dklSw4YNfdqdTqfq16/v/f6MWrVq5QuOVapU0aFDh3za5s2bp5tvvlkhIWffVDt48KCGDRum6OhohYeHq0aNGqpXr54keevft2+fsrOz1bRp09+s+5dffrloHwAoKt6xBVCmeDweSdK9996rgQMHFtinefPmkqS+fftq0KBBWrNmjVq2bKkZM2aoa9euPu9xjh07Vs8++6weeOAB/d///Z+qVq2qoKAgPfHEE97fdSEOh0PGmHztbrfbZ//LL79U9+7ddcMNN+j1119XbGysQkNDNXXqVL3//vuFuv6iutCMCufWf+zYMS1btkyTJk3y6XPPPffo66+/1tNPP62WLVuqUqVK8ng8uuWWWy76zwgAShPBFkCZUqNGDVWuXFlut1tJSUm/2bdnz556+OGHva8jbNq0SSNHjvTpM2vWLHXp0kUpKSk+7YcPH77oQKYqVark+6t8Sfmeln744YcKCwvTZ599JpfL5W2fOnVqvmMv9a/jz8xnm56ervr163vb8/LytHXr1ov+synIkiVLlJub6zOY7NChQ0pNTdWYMWM0atQob/vmzZt9jq1Ro4YiIiKUlpb2m7/jiiuuuGgfACgqXkUAUKYEBwfrrrvu0ocfflhgQNq3b593OyoqSsnJyZoxY4amTZsmp9Opnj175jvf+U9dZ86cqV27dl20liuuuEIbN270+Z0//vijvvrqq3y/w+Fw+DzJ3bZtW4ELMVSsWDHfdF0FSUpKktPp1CuvvOJTf0pKirKysoo0B+38+fPVunVrRUdH+9QuKd8/owkTJvjsBwUFqWfPnvr444/1/fff5zv3mePvuusu/fjjj/roo48u2AcAioontgDKnBdeeEFLly5VYmKiHnzwQTVu3FgHDx7U6tWrtXjxYh08eNDbt0+fPrr33nv1+uuvKzk5WVFRUT7nuv322/X8889r0KBBat++vdatW6f33nvP5ynohTzwwAMaP368kpOTNXjwYO3du1eTJ09WkyZNlJ2d7e3XrVs3jR8/Xrfccot+97vfae/evZo4caKuvPJKrV271uecrVq10uLFizV+/HjFxcWpXr16SkxMzPe7a9SooZEjR2rMmDG65ZZb1L17d6Wnp+v1119XmzZtfAaKXar58+d731M+IyIiQjfccINeeuklnTx5UvHx8Vq4cKG2bt2a7/ixY8dq4cKF6tSpkx566CFdffXV2rNnj2bOnKnly5crKipKTz/9tGbNmqXevXvrgQceUKtWrXTw4EHNnTtXkydPVosWLQpdNwB42TYfAwBchszMTDN06FCTkJBgQkNDTUxMjOnatat54403fPplZ2eb8PBwI8m8++67+c5z4sQJ89RTT5nY2FgTHh5urr/+erNixYp8U3kVNN2XMca8++67pn79+sbpdJqWLVuazz77rMDpvlJSUkyDBg2My+UyjRo1MlOnTjWjR4825/8xvHHjRnPDDTd4az4z9df5032d8dprr5lGjRqZ0NBQEx0dbYYMGWIOHTrk06dTp06mSZMm+a793DrT0tKMJLNy5cp8/X799VfTq1cvExUVZSIjI03v3r3N7t27jSQzevRon77bt283AwYMMDVq1DAul8vUr1/fDB061OTm5nr7HDhwwDz66KMmPj7eOJ1OU6tWLTNw4MB807cBQGE5jOHvfgCgvHvppZc0fvx47dmzh2m3AJRZvGMLAFDdunX1j3/8g1ALoEzjiS0AAAACAk9sAQAAEBAItgAAAAgIBFsAAAAEhICZx9bj8Wj37t2qXLkygx8AAAD8kDFGR44cUVxcnIKCiv/5asAE2927dyshIcHuMgAAAHARO3fuVK1atYr9vAETbCtXrizJ+gcVERFhczUAAAA4X3Z2thISEry5rbgFTLA98/pBREQEwRYAAMCPldRrowweAwAAQEAg2AIAACAgEGwBAAAQEAi2AAAACAgEWwAAAAQEgi0AAAACAsEWAAAAAYFgCwAAgIBAsAUAAEBAINgCAAAgIBBsAQAAEBAItgAAAAgIBFsAAAAEhBC7CwAAAEAp8Lil3OPSiWOnf+ZYP2vES1Vj7K6uWBBsAQAA/JUxUt6JsyH0RE7+YHp+W77vj1nbeScK/h09HpE6312611VCCLYAAABFYYzkPinl5VqhMS9XOnninP0T0sncs/snL6HfyRNS7rnHHbd+T3EKDpHCKkiuClJYRSm8YvGe30YEWwAAULw8bikn2/ocPSzlZElHs3x/nsiRHEFSUJAUFGz9dJyz7fMzuHD9HEFScLDk8UinTkruU1YAPXWhn+f2OafdfeoC++dsG0/p/DN1BJ0Oo+FWGM23XcH6ee52QW1hFaQQZ+nUbAOCLQAAuLAzfxWek3U6pGaf97OA0Hr8aPE/ZfR3wSFSqEtyhklO1znbYae3C9gPDTun/fz9MCnUaQVSV7i173DYfZV+j2ALAEB55T4lHd4nHdprfQ7vPbt95JAVUnOypJN5RTt/hcpSxUjrU+m8nxUqSUbW012P23q66nFbT0Dd5/08853358W+P/0zKMgKnCGhUnCoFBJy+mfoOe0hZ7e9+wX0udA5zgTRYCKVP+AuAAAQiIyRjh3xDavnh9fsA5f+ZDUkVKoUdU5QjZAqRp0NqueH1woR1usAQCki2AIAUBadOill7S84sB7KtH5eaBT8uUJCpaiaUpVzPlE1pchqUsWIs2GWvwpHGUCwBQDAn+XlShnbpD1brc/uLdLeHVL2wUt72lopyjewnhtgq0RboTWI9ZoQGAi2AAD4A49HOphxNrye+bl/94VH3oeEFhxYo06H1qga1jugQDlBsAUAoLTlZJ0OrlulPadD7J5tF351oGKkFFdfiq13+lPXWimqUhSvBwDnINgCAFBSTuVJmTvPPoE9E2KzDhTcPyRUiq7jG2Lj6kuVqxBggUtAsAUAoDicOint3CRtSZN2/WwF2L07rWmnClI1RoqrJ8WeDrFx9aTqtZhJALgMBFsAAIoi97i0bb20ZZ312b6h4PlewyvlfwIbU9daAQpAsSLYAgBwKXKyrKexW9KkLWulXzdbA77OVTFSqt9Mqt3QCrBx9aXI6rxGAJQSgi0AAAU5tPfs09gtadaUW+erUlOq31yq31S6orlUM4EQC9iIYAsAgDHSvl+tEPvLWivIHszI3y+6tvVE9orTYbZKdOnXCuCCCLYAgPLH45Z2bTnniew66ehh3z6OICn+SumKZlaYrd/Uml4LgN8i2AIAApvbLe3/9eyUWzs3S9t+kk4c8+0XEirVudoKsPWbS3UbM8ALKGMItgCAwGCMtczsuUvP7tkqZW63puI6n6uCVK/J2SeytRtKIc7SrxtAsSHYAgDKnrwT1mCu3eeF2Jysgvs7w6zVumJPzxtbv6k1Y0EQc8YCgYRgCwDwXx63dGCPb3jdvVU6sNt6Qns+R5BUPe7svLFnflaNkYKCSr9+AKWKYAsA8A/GWIscbN94dvnZjO3W09mCVIryDa9x9a3laJ2uUi0bgP8g2AIA7JWTLX2/SFoxT8rckf/7UKcUXff08rPnrN5VuUqplwrAvxFsAQClzxhpa5r09Tzpx8/PDu5yhklXXSvFXXE6wNazXi3gXVgAl4BgCwAoPceOSN8vlr7+xJqt4Iz4K6R2t0utbpTCKtpXH4AyjWALAChZxkjb1lth9sfPpZN5VrszTLqmsxVoazdkKVoAl41gCwAoGcePWk9nV3wi7dl2tj2uvtSum9SqqxReybbyAAQegi0AoPicmdlgxTzph2XSyVyrPdR1+ulsN2t1L57OAigBBFsAwOU7flRalWoF2t1bzrbH1rVeNWidxNNZACWOYAsAKBpjpB3p1qsGPyw7O99sqFNq0Ulqf7tUtzFPZwGUGoItAKBwTuRIq5ZYgXbXL2fbo2uffTpbMcK++gCUWwRbAMClydwuLZslrV569ulsSOjpp7PdpHpNeToLwFYEWwDAbzuUKS34j/TdIsl4rLaaCdZAsDY3SRUj7a0PAE4j2AIACpaTJS3+QFr+37MrgzVtL3W6S7qiOU9nAfidoKIcNHHiRNWtW1dhYWFKTEzUypUrL9i3c+fOcjgc+T7dunXz6bdhwwZ1795dkZGRqlixotq0aaMdOwpYMxwAULJyj0sL35X+cp/16sGpk1aQHfaKNPh56coWhFoAfqnQT2ynT5+u4cOHa/LkyUpMTNSECROUnJys9PR01axZM1//2bNnKy8vz7t/4MABtWjRQr179/a2/fLLL+rQoYMGDx6sMWPGKCIiQj/99JPCwsKKeFkAgEI7ddKarmvhu9LRw1Zb/BVSt8FSozaEWQB+z2GMMYU5IDExUW3atNFrr70mSfJ4PEpISNBjjz2mESNGXPT4CRMmaNSoUdqzZ48qVrTWA+/bt69CQ0P1zjvvFOESLNnZ2YqMjFRWVpYiIhiNCwCXzOORflgqzZ8qHcyw2qrFSrcNklp2loKK9Jd7AJBPSee1Qv1plZeXp1WrVikpKensCYKClJSUpBUrVlzSOVJSUtS3b19vqPV4PJo3b56uuuoqJScnq2bNmkpMTNScOXMKUxoAoLCMkX76Rvr7I9K746xQW7mqdPfj0ogp0rU3EmoBlCmFehVh//79crvdio6O9mmPjo7Wxo0bL3r8ypUrlZaWppSUFG/b3r17dfToUb3wwgv6y1/+ohdffFELFizQnXfeqaVLl6pTp04Fnis3N1e5ubne/ezs7MJcCgCUb1t/kj75t7RlnbUfVkG6sa90Qy/JFW5vbQBQRKU6K0JKSoqaNWumtm3bets8HmvqmB49eujJJ5+UJLVs2VJff/21Jk+efMFgO27cOI0ZM6bkiwaAQLJnqzR/ipR2+m/ZQkKljr2krn2YtgtAmVeoYFu9enUFBwcrMzPTpz0zM1MxMTG/eWxOTo6mTZum559/Pt85Q0JC1LhxY5/2q6++WsuXL7/g+UaOHKnhw4d797Ozs5WQkHCplwIA5cvBDOnTt6VVi61XEBxBUmKylDxAiqphd3UAUCwKFWydTqdatWql1NRU9ezZU5L1xDU1NVWPPvrobx47c+ZM5ebm6t577813zjZt2ig9Pd2nfdOmTapTp84Fz+dyueRyuQpTPgCUP0cOWXPRfvWx5D49F23zjtbAsOja9tYGAMWs0K8iDB8+XAMHDlTr1q3Vtm1bTZgwQTk5ORo0aJAkacCAAYqPj9e4ceN8jktJSVHPnj1VrVq1fOd8+umn1adPH91www3q0qWLFixYoI8//ljLli0r2lUBQHl3Iseag3bZLGteWklqcI10+2CpdiN7awOAElLoYNunTx/t27dPo0aNUkZGhlq2bKkFCxZ4B5Tt2LFDQeeNok1PT9fy5cu1cOHCAs/Zq1cvTZ48WePGjdPjjz+uhg0b6sMPP1SHDh2KcEkAUI6dypO++kRa9J61cpgk1Wog3f57qWEre2sDgBJW6Hls/RXz2AIo19xuaVWqtOBt6dDpcRA14qXbHrBePWDaLgB+oKTzWqnOigAAKGYet7Tmc+mzd6S9O622yGrSzfdJibdIwfwxD6D84E88ACiLPB5p7ZfSgv9ImduttgqVpRv7SB17Sk6WJAdQ/hBsAaAsMUZa95X1ysGerVZbeCWpS28r0IZVtLU8ALATwRYAyoIzy98ueFva9bPVFlZB6nSX9QmvZG99AOAHCLYA4M+MkTZ+J336lrRzk9XmCreWvu10t1SRwbIAcAbBFgD8kTHSptVWoN2+wWpzhkkdekhd7pEqsfwtAJyPYAsA/mbzGivQbk2z9kOd0vU9pBvvkSpXsbMyAPBrBFsA8Bdb1kmfvi39vMbaDwmV2t9hzXQQmX/VRgCAL4ItANht23or0G5aZe0Hh0rtbpO69pOiqttbGwCUIQRbALDLjo3WPLQbVlr7QcFS4q3STf2kKtH21gYAZRDBFgBK26+brUD70wprPyhIapMs3dxfqhpjb20AUIYRbAGgtOzeYgXadcutfUeQ1DpJuvleqXqcvbUBQAAg2AJASdu9RVr4rvTjF9a+wyFde6N0831SzVr21gYAAYRgCwAlZedmadG71hK4Z1zT2Qq0MXXsqgoAAhbBFgCK2/aN1hPa9d9Y+w6H1LKzdNPvpNh6tpYGAIGMYAsAxWXbeumzd6wlcCXrHdprb7RmOYjmCS0AlDSCLQBcrl/WSQvfsZbAlaxZDlolWU9oa/AOLQCUFoItABSFMdLPP1qB9ucfrbagYKnNzVJSP2Y5AAAbEGwBoDCMsZ7MLnzXWgJXkoJDpLa3SEl9mYcWAGxEsAWAS2GM9e7swnetd2mls0vf3thHqlLT3voAAARbAPhNxkjrv7VeOdiRbrWFOqV2t0td7pGiqttbHwDAi2ALAAXxeKwlbz97R9r1s9UW6pKu7y516S1FVLW3PgBAPgRbADiXxyOtXW4trLB7i9XmDJM69JA63y1VrmJvfQCACyLYAoAkedzSmi+sd2gzt1ttrgrSDT2lG+6SKkXaWh4A4OIItgCweY304StS5g5rP6yidMOd0g29pIoRtpYGALh0BFsA5dfRw9J/J0vfL7b2K1SWOt0ldewphVeyszIAQBEQbAGUPx6PtHKB9PGb0rEjksMhtb9D6vYAgRYAyjCCLYDyZc82aeYEaWuatR9/hdT7CanO1TYWBQAoDgRbAOVD3glrYNjSmdZAMWeYdOv9UsdeUnCw3dUBAIoBwRZA4NuwUpr1inQww9pv2l66c6hUJdreugAAxYpgCyBwZR2Q5rwurfnc2o+qId35qNTsenvrAgCUCIItgMDjcUtffyLNS5FOHJOCgqzpu24ZKLnC7a4OAFBCCLYAAsuvm63BYTvSrf3ajaR7npDir7SzKgBAKSDYAggMucelT9+SvvhIMh4prILUbbDU/nYpiMFhAFAeEGwBlH3rvpJmvyYd3mftX9NZ6jFEiqxmZ1UAgFJGsAVQdh3KtAJt2gprv2qMdPfj0tVt7a0LAGALgi2Assftlr6YLS1425qfNihYuvEe6ab+1vy0AIByiWALoGzZvkGaMUHa/Yu1X7+ZdPcwKbaunVUBAPwAwRZA2XD8qDV919efSMZIFSpL3R+S2iRb03kBAMo9gi0A/+Y+JX2/SJo3VTpy0Gprc7MVaitF2VoaAMC/EGwB+Cf3Ken7xdKi96QDe6y2mglS72HSlS1tLQ0A4J8ItgD8i9strTodaPfvttoqRUk39pE69pBCnLaWBwDwXwRbAP7B7ZZWpUqL3j0v0N4jtb+DpXABABdFsAVgLwItAKCYEGwB2MPtllanSgvfk/bvstoqRlqB9vruBFoAQKERbAGUrgsF2i73SB0ItACAoiPYAigdbre0eon1ysE+Ai0AoPgRbAGULLdb+mGptPBdad+vVlvFiNOBtgeBFgBQbIq0XM/EiRNVt25dhYWFKTExUStXrrxg386dO8vhcOT7dOvWrcD+jzzyiBwOhyZMmFCU0gD4C4/bmof2xcHSey9YobZihNRtsPS/70pd+xJqAQDFqtBPbKdPn67hw4dr8uTJSkxM1IQJE5ScnKz09HTVrFkzX//Zs2crLy/Pu3/gwAG1aNFCvXv3ztf3o48+0jfffKO4uLjClgXAX3jc0g/LpM/eOfuEtkJlqUtvqUNPKayCndUBAAJYoYPt+PHj9eCDD2rQoEGSpMmTJ2vevHmaMmWKRowYka9/1apVffanTZumChUq5Au2u3bt0mOPPabPPvvsgk9zAfixM4F24bvS3p1WG4EWAFCKChVs8/LytGrVKo0cOdLbFhQUpKSkJK1YseKSzpGSkqK+ffuqYsWK3jaPx6P77rtPTz/9tJo0aVKYkgDYzZjTT2j/4xtoO/e2VgoLq/ibhwMAUFwKFWz3798vt9ut6Ohon/bo6Ght3LjxosevXLlSaWlpSklJ8Wl/8cUXFRISoscff/ySa8nNzVVubq53Pzs7+5KPBVBMMrdLM/8p/bLW2q9QWep8t9SxJ4EWAFDqSnVWhJSUFDVr1kxt27b1tq1atUr//Oc/tXr1ajkcjks+17hx4zRmzJiSKBPAxeTlSovfk5bMkNynpFCXNRis050EWgCAbQo1K0L16tUVHByszMxMn/bMzEzFxMT85rE5OTmaNm2aBg8e7NP+5Zdfau/evapdu7ZCQkIUEhKi7du366mnnlLdunUveL6RI0cqKyvL+9m5c2dhLgVAUW38Tnrp99Ki961Q2zhRGpEiJd9HqAUA2KpQT2ydTqdatWql1NRU9ezZU5L1fmxqaqoeffTR3zx25syZys3N1b333uvTft999ykpKcmnLTk5Wffdd593gFpBXC6XXC5XYcoHcDmyDkhzXpfWfG7tR1aX7hwqNesgFeJvWwAAKCmFfhVh+PDhGjhwoFq3bq22bdtqwoQJysnJ8YbQAQMGKD4+XuPGjfM5LiUlRT179lS1atV82qtVq5avLTQ0VDExMWrYsGFhywNQ3Dxu6auPpflTpBPHJEeQdEMv6ZaBzHQAAPArhQ62ffr00b59+zRq1ChlZGSoZcuWWrBggXdA2Y4dOxQU5PuGQ3p6upYvX66FCxcWT9UASsfOzdLMf0g7N1n7tRtKvZ+QajWwtSwAAAriMMYYu4soDtnZ2YqMjFRWVpYiIiLsLgco207kSJ++LX05RzIe68lst8FS+9uloGC7qwMAlFElnddKdVYEAH7OGGntl9JHE613aiXpmi5Sj0ekyGq/fSwAADYj2AKwHNgjffiqtGGltV89TrrrcalRa3vrAgDgEhFsgfLu1Elp2SxrKdyTuVJwiDUnbdd+kpOZRwAAZQfBFijPtqyzVg7L2GbtX9lCunuYFF3b1rIAACgKgi1QHuVkSR//W/r2U2u/UpTU/WGpdRJz0gIAyiyCLVCeGCN9t1Ca+y8pJ9tqu+426fbfSxWZTQQAULYRbIHyInO79drBL2ut/di6Uu8npXpNbC0LAIDiQrAFAl1errT4PWnJDMl9SnKGScn3SZ3usgaKAQAQIPivGhDIjJH+8xfppxXWfpN20p2PSlWj7a0LAIASQLAFAtkPy6xQGxwqDfgfqVkHBocBAAIWwRYIVDnZ1gpiknRzf6l5R3vrAQCghAXZXQCAEjL3X9LRw1J0HenGPnZXAwBAiSPYAoFo8w/Sys+s1w76DJdCQu2uCACAEkewBQJNXq40Y4K13f4OpvMCAJQbBFsg0Cx6T9q/S4qsJnV7wO5qAAAoNQRbIJDs3iItmW5t3/W4FF7J3noAAChFBFsgUHjc0ozx1s9mHaRm19tdEQAApYpgCwSK5XOl7RulsArWIgwAAJQzBFsgEBzaK82fYm3f/nspqrq99QAAYAOCLVDWGSN9+KqUe1yq20Rqd7vdFQEAYAuCLVDW/fjl6WVzQ6w5a4P41xoAUD7xX0CgLDt2RJr9mrXdtZ8UU8feegAAsBHBFijLPn5TOnJQqpkg3dTP7moAALAVwRYoq35ZK30z39q+Z7gU4rS3HgAAbEawBcqik3nSjH9Y2+26SVc0s7ceAAD8AMEWKIsWfyDt3SlVrird8aDd1QAA4BcItkBZs2eblPqBtX3noyybCwDAaQRboCzxeKxXENynpCbtpBYd7a4IAAC/QbAFypIVn0jbfpJc4dJdj0kOh90VAQDgNwi2QFlxeL/0yb+t7dsekKrUtLceAAD8DMEWKCtmvyadOCbVaSR16G53NQAA+B2CLVAWrF0urVsuBQVbc9YGBdtdEQAAfodgC/i740el2a9a2zf2keLq21sPAAB+imAL+Lt5KVLWAal6vHRTf7urAQDAbxFsAX+2JU366mNr+54nJafL3noAAPBjBFvAX506Z9nctslSg5a2lgMAgL8j2AL+askMKXO7VClK6v6w3dUAAOD3CLaAP8rcIS18z9ru9QepYoS99QAAUAYQbAF/410296R0dVvpmi52VwQAQJlAsAX8zbefSlvWSc4w6e7HWTYXAIBLRLAF/EnWAWnuG9b2rfdLVWNsLQcAgLKEYAv4k48mSidypFpXSR172V0NAABlCsEW8BdpK6Qfv5CCgqQ+T0rBLJsLAEBhEGwBf3DimPThK9Z2p7ulWg3srQcAgDKIYAv4g/lTpMP7rHdqbxlgdzUAAJRJBFvAbts3SMv/a23f86Q1GwIAACg0gi1gp1N50vTxkjFS6ySpYSu7KwIAoMwi2AJ28Xik91+S9my1Vhbr8YjdFQEAUKYVKdhOnDhRdevWVVhYmBITE7Vy5coL9u3cubMcDke+T7du3SRJJ0+e1DPPPKNmzZqpYsWKiouL04ABA7R79+6iXRFQFhgj/Xey9MMyKThEuu/PUqUou6sCAKBMK3SwnT59uoYPH67Ro0dr9erVatGihZKTk7V3794C+8+ePVt79uzxftLS0hQcHKzevXtLko4dO6bVq1fr2Wef1erVqzV79mylp6ere/ful3dlgD9bMkP6Yra13e9pXkEAAKAYOIwxpjAHJCYmqk2bNnrttdckSR6PRwkJCXrsscc0YsSIix4/YcIEjRo1Snv27FHFihUL7PPdd9+pbdu22r59u2rXrn1JdWVnZysyMlJZWVmKiIi49AsCStt3C61XECTr9YPOd9tbDwAApaSk81qhntjm5eVp1apVSkpKOnuCoCAlJSVpxYoVl3SOlJQU9e3b94KhVpKysrLkcDgUFRVVmPIA/7dhpTTt79Z2596EWgAAilFIYTrv379fbrdb0dHRPu3R0dHauHHjRY9fuXKl0tLSlJKScsE+J06c0DPPPKN+/fr9ZpLPzc1Vbm6udz87O/sSrgCw0faN0lvPSx631KqrdMeDdlcEAEBAKdVZEVJSUtSsWTO1bdu2wO9Pnjype+65R8YYTZo06TfPNW7cOEVGRno/CQkJJVEyUDz2/Sq9+Wcp74R0VSup7x+tpXMBAECxKdR/WatXr67g4GBlZmb6tGdmZiomJuY3j83JydG0adM0ePDgAr8/E2q3b9+uRYsWXfS9i5EjRyorK8v72blzZ2EuBSg92QelySOknCyp1lXSoNFSSKjdVQEAEHAKFWydTqdatWql1NRUb5vH41FqaqratWv3m8fOnDlTubm5uvfee/N9dybUbt68WYsXL1a1atUuWovL5VJERITPB/A7J3KkN0ZKBzOk6nHSQ3+VwirYXRUAAAGpUO/YStLw4cM1cOBAtW7dWm3bttWECROUk5OjQYMGSZIGDBig+Ph4jRs3zue4lJQU9ezZM19oPXnypO6++26tXr1an3zyidxutzIyMiRJVatWldPpLOq1AfY6lSdNeU7a9Ys1R+3DL0iVq9hdFQAAAavQwbZPnz7at2+fRo0apYyMDLVs2VILFizwDijbsWOHgs57dzA9PV3Lly/XwoUL851v165dmjt3riSpZcuWPt8tXbpUnTt3LmyJgP3OrCq2+QfJFS49NNZ6YgsAAEpMoeex9VfMYwu/YYw0Z5K1AENQsBVqWYABAAD/mscWwCVYes6qYr/7E6EWAIBSQrAFitN3i6SP37S2uz9szVcLAABKBcEWKC4bVkrT/mZtd+4tdeltbz0AAJQzBFugOOw4Z1Wxa29kVTEAAGxAsAUu175fpTf/9+yqYv2eZlUxAABswH99gctxZlWxo4elWg1YVQwAABsRbIGiOpEjvfE/1qpi1WKtab1YVQwAANsQbIGiOHXy9KpiP7OqGAAAfoJgCxSWxyN9cHpVMWeY9aS2RrzdVQEAUO4RbIHCMEb672Rp9VJrVbFBz0kJV9ldFQAAEMEWKJxlM31XFWvU2t56AACAF8EWuFTfLZLmvmFts6oYAAB+h2ALXIqN352zqtjdrCoGAIAfItgCF7MjXZo65pxVxR6yuyIAAFAAgi3wW/btkt788+lVxa5lVTEAAPwY/4UGLuRUnjT1uXNWFXuOVcUAAPBjBFvgQj57R9qz1VqA4cG/sqoYAAB+jmALFGT7Bil1urXde5gUUdXeegAAwEURbIHz5eVK778kGY81WKx5R7srAgAAl4BgC5xv/hRp704popp056N2VwMAAC4RwRY41y/rzq4sds+TUsUIe+sBAACXjGALnJF7XPrgJckYKfEWqcl1dlcEAAAKgWALnPHxm9KBPVJUDanHI3ZXAwAAColgC0hS+irpq7nWdt8/SuGV7K0HAAAUGsEWOH5UmvY3a/v67lLDVvbWAwAAioRgC/x3snR4n1QtVrrjQburAQAARUSwRfn20zfStwskh0Pq9yfJFW53RQAAoIgItii/crKl6eOt7U53SVc0s7ceAABwWQi2KL9mvyYdOSjVrC3dOsjuagAAwGUi2KJ8WvultHqJ5AiSfve05HTZXREAALhMBFuUP0cOSTP/aW137SPVudreegAAQLEg2KJ8MUaa9U/p6GEptp6UfJ/dFQEAgGJCsEX5snqJtHa5FBQs9X9GCnHaXREAACgmBFuUH1n7rQFjknTzvVL8lfbWAwAAihXBFuWDMdKMf0jHjki1rpKS+tldEQAAKGYEW5QPKxdI67+VgkOl3/1JCg6xuyIAAFDMCLYIfIcypY8mWdu33i/F1rWzGgAAUEIItghsxkjT/i7lHpPqNpa63G13RQAAoIQQbBHYvv5Y2rRaCnVJ/f5kzYYAAAACEsEWgWv/bmnuG9b27b+Xataytx4AAFCiCLYITB6P9MHLUt4J6coWUocedlcEAABKGMEWgemL2dKWdZIrXOr7RymI/6kDABDo+K89Ak/mDmn+FGu7+8NStVh76wEAAKWCYIvA4nZL778kncyTGrWW2nWzuyIAAFBKCLYILEunSzs2SmEVpT5PSQ6H3RUBAIBSQrBF4Ni9RVrwH2u711Apqoa99QAAgFJFsEVgOHVSev9FyX1KatpOanOT3RUBAIBSRrBFYFj0vrTrF6lCZan3k7yCAABAOVSkYDtx4kTVrVtXYWFhSkxM1MqVKy/Yt3PnznI4HPk+3bqdHdRjjNGoUaMUGxur8PBwJSUlafPmzUUpDeXRzk3S4ves7bsflyKq2lsPAACwRaGD7fTp0zV8+HCNHj1aq1evVosWLZScnKy9e/cW2H/27Nnas2eP95OWlqbg4GD17t3b2+ell17SK6+8osmTJ+vbb79VxYoVlZycrBMnThT9ylA+nMyzZkHweKQWN0jXdLG7IgAAYJNCB9vx48frwQcf1KBBg9S4cWNNnjxZFSpU0JQpUwrsX7VqVcXExHg/ixYtUoUKFbzB1hijCRMm6H//93/Vo0cPNW/eXP/5z3+0e/duzZkz57IuDuXAgreljG1SpSjp7mF2VwMAAGxUqGCbl5enVatWKSkp6ewJgoKUlJSkFStWXNI5UlJS1LdvX1WsWFGStHXrVmVkZPicMzIyUomJiZd8TpRT29ZLS2da2/c8KVWKtLceAABgq5DCdN6/f7/cbreio6N92qOjo7Vx48aLHr9y5UqlpaUpJSXF25aRkeE9x/nnPPNdQXJzc5Wbm+vdz87OvqRrQIDIPS6996JkPFLrJKnZ9XZXBAAAbFaqsyKkpKSoWbNmatu27WWfa9y4cYqMjPR+EhISiqFClBnzUqT9u6TI6tKdj9pdDQAA8AOFCrbVq1dXcHCwMjMzfdozMzMVExPzm8fm5ORo2rRpGjx4sE/7meMKe86RI0cqKyvL+9m5c2dhLgVl2abV0pdzrO2+f5TCK9laDgAA8A+FCrZOp1OtWrVSamqqt83j8Sg1NVXt2rX7zWNnzpyp3Nxc3XvvvT7t9erVU0xMjM85s7Oz9e233/7mOV0ulyIiInw+KAeOH5Wm/c3abn+71Ki1vfUAAAC/Uah3bCVp+PDhGjhwoFq3bq22bdtqwoQJysnJ0aBBgyRJAwYMUHx8vMaNG+dzXEpKinr27Klq1ar5tDscDj3xxBP6y1/+ogYNGqhevXp69tlnFRcXp549exb9yhCY/jtZOrRXqhYrdX/Y7moAAIAfKXSw7dOnj/bt26dRo0YpIyNDLVu21IIFC7yDv3bs2KGgIN8Hwenp6Vq+fLkWLlxY4Dn/9Kc/KScnRw899JAOHz6sDh06aMGCBQoLCyvCJSFgpa2Qvl1grSrW70+SK9zuigAAgB9xGGOM3UUUh+zsbEVGRiorK4vXEgJRTpb04u+lI4ekzr2lHjytBQCgrCnpvFaqsyIARfbhq1aoja4t3TbI7moAAIAfItjC//2wVPphmRQUJP3uGSnUaXdFAADADxFs4d+yDkizXrG2k/pLtRvaWw8AAPBbBFv4L2OkGf+Qjh2R4q+Ubu5vd0UAAMCPEWzhv1Z+Jq3/RgoOlfo/IwUXehIPAABQjhBs4Z8OZkofvW5t33q/FFvP1nIAAID/I9jC/3g81upiucekuk2kLnfbXREAACgDCLbwP1/NlTb/IDnDpN/9SQoKtrsiAABQBhBs4V/2/ip9/Ka1fceDUo14e+sBAABlBsEW/sPjlt5/UTqZKzW4Rmp/h90VAQCAMoRgC/+xdKa0fYMUVkHq90drQQYAAIBLRHKAf9i9Rfr0bWu711CpSrS99QAAgDKHYAv7nTppvYLgPik1aSe1udnuigAAQBlEsIX9Fr0n7fpFqhgh3fOk5HDYXREAACiDCLaw146N0uL3re27h0kRVe2tBwAAlFkEW9gnL1d67yVrQYZrukgtO9ldEQAAKMMItrDPp1OlvTukylWlux6zuxoAAFDGEWxhj1/WSp9/aG33GW69XwsAAHAZCLYofSeOSe+/JBkjJd4qNbnO7ooAAEAAINii9M19QzqYYc1V2/MRu6sBAAABgmCL0rXxO2nFJ9Z2v6elsIr21gMAAAIGwRal59gRadrfrO2OvaQGLW0tBwAABBaCLUrP7IlS1gGpRi3p9sF2VwMAAAIMwRalY+2X0qrFkiNI+t2fJGeY3RUBAIAAQ7BFyTtySJr5T2u7ax+pbmN76wEAAAGJYIuSZYw0c4J09LAUV19Kvs/uigAAQIAi2KJkrUqV1n0lBYdIv3tGCnHaXREAAAhQBFuUnMP7pA9ftbaT75Pir7C3HgAAENAItig5sydKJ3Kk2g2lG/vaXQ0AAAhwBFuUjN1bpHXLJYdD6vtHKTjY7ooAAECAI9iiZCz+wPrZvKMUW8/eWgAAQLlAsEXx2/ertOZza/um39lbCwAAKDcItih+qdMk45EaJ0rxV9pdDQAAKCcItihehzKl7xZZ2zf1t7cWAABQrhBsUbyWzJA8bunKlqwwBgAAShXBFsXnyCHp20+tbd6tBQAApYxgi+KzbJZ0Mk+q00hqcI3d1QAAgHKGYIvikZMtfTXX2k7qb81fCwAAUIoItigeX86Rco9LcfWlJtfZXQ0AACiHCLa4fCeOSV9+ZG0n9eNpLQAAsAXBFpfv64+lY0ekGrWkFjfYXQ0AACinCLa4PHm51qAxSeraVwoKtrceAABQbhFscXlWLrCm+apSU2qdZHc1AACgHCPYoujcp6Ql063tG/tIwSH21gMAAMo1gi2K7vvF0qG9UuUqUttb7K4GAACUcwRbFI3HLaV+YG13vltyuuytBwAAlHsEWxTNmi+kfbukCpWl9nfYXQ0AAADBFkXg8UiL37e2O/aSwirYWw8AAICKGGwnTpyounXrKiwsTImJiVq5cuVv9j98+LCGDh2q2NhYuVwuXXXVVZo/f773e7fbrWeffVb16tVTeHi4rrjiCv3f//2fjDFFKQ8lbf030p6tkquC1LGn3dUAAABIkgo9jH369OkaPny4Jk+erMTERE2YMEHJyclKT09XzZo18/XPy8vTTTfdpJo1a2rWrFmKj4/X9u3bFRUV5e3z4osvatKkSXr77bfVpEkTff/99xo0aJAiIyP1+OOPX9YFopgZIy06/bT2+jukihH21gMAAHBaoYPt+PHj9eCDD2rQoEGSpMmTJ2vevHmaMmWKRowYka//lClTdPDgQX399dcKDQ2VJNWtW9enz9dff60ePXqoW7du3u8/+OCDiz4Jhg02rZZ2bJRCndagMQAAAD9RqFcR8vLytGrVKiUlnZ2IPygoSElJSVqxYkWBx8ydO1ft2rXT0KFDFR0draZNm2rs2LFyu93ePu3bt1dqaqo2bdokSfrxxx+1fPly3XrrrUW5JpSkM+/WXnebNc0XAACAnyjUE9v9+/fL7XYrOjrapz06OlobN24s8JgtW7ZoyZIl6t+/v+bPn6+ff/5Zf/jDH3Ty5EmNHj1akjRixAhlZ2erUaNGCg4Oltvt1l//+lf179//grXk5uYqNzfXu5+dnV2YS0FRbP1J+vlHayGGLvfYXQ0AAICPEl8qyuPxqGbNmnrjjTcUHBysVq1aadeuXXr55Ze9wXbGjBl677339P7776tJkyZas2aNnnjiCcXFxWngwIEFnnfcuHEaM2ZMSZePcy16z/rZ+iZrCV0AAAA/UqhgW716dQUHByszM9OnPTMzUzExMQUeExsbq9DQUAUHB3vbrr76amVkZCgvL09Op1NPP/20RowYob59+0qSmjVrpu3bt2vcuHEXDLYjR47U8OHDvfvZ2dlKSEgozOWgMH7dLG1YKTmCpK597a4GAAAgn0K9Y+t0OtWqVSulpqZ62zwej1JTU9WuXbsCj7n++uv1888/y+PxeNs2bdqk2NhYOZ1OSdKxY8cUFORbSnBwsM8x53O5XIqIiPD5oAQtPr3K2DWdpBrx9tYCAABQgELPYzt8+HC9+eabevvtt7VhwwYNGTJEOTk53lkSBgwYoJEjR3r7DxkyRAcPHtSwYcO0adMmzZs3T2PHjtXQoUO9fe644w799a9/1bx587Rt2zZ99NFHGj9+vHr16lUMl4jLlrldWvultZ30O3trAQAAuIBCv2Pbp08f7du3T6NGjVJGRoZatmypBQsWeAeU7dixw+fpa0JCgj777DM9+eSTat68ueLj4zVs2DA988wz3j6vvvqqnn32Wf3hD3/Q3r17FRcXp4cfflijRo0qhkvEZVs8zZq/tml7Kbae3dUAAAAUyGECZHmv7OxsRUZGKisri9cSitOBPdLYgdYyuk++JtVuZHdFAACgjCrpvFakJXVRjiyZboXaq1oRagEAgF8j2OLCsvZL335mbd/Eu7UAAMC/EWxxYctmSe6TUr0m0hXN7a4GAADgNxFsUbCjWdLXn1jbN/WXHA576wEAALgIgi0K9sVsKe+EVKuB1KiN3dUAAABcFMEW+R0/Kn05x9pO6sfTWgAAUCYQbJHfV3OlEzlSdG2pWQe7qwEAALgkBFv4yjshfT7b2u7aTwrifyIAAKBsILXA14r50tHDUtUY6dob7a4GAADgkhFscdapPGnpDGu7a18pONjeegAAAAqBYIuzvltkLcoQWU1qe7Pd1QAAABQKwRYWt1tKnWZtd+4thTjtrQcAAKCQCLawrFkmHdgjVYyU2nWzuxoAAIBCI9hC8nikRe9b253ulFzh9tYDAABQBARbSGlfS5nbpbAKUocedlcDAABQJATb8s6Ys09rO/SUwivZWg4AAEBREWzLu/TvpV83Sc4w6zUEAACAMopgW96deVp73W1SpShbSwEAALgcBNvy7Jd10pZ1UnCo1OUeu6sBAAC4LATb8mzxe9bPtjdLUdXtrQUAAOAyEWzLqw0rpY3fS0FB0o197K4GAADgshFsy6P9u6V3xlrb7e+QqsfZWw8AAEAxINiWN7nHpSmjpONHpTqNpB4P210RAABAsSDYlifGSNP+Ju3ZJlWuKt3/nBTitLsqAACAYkGwLU+WTJfWfC4Fh0j3j2LAGAAACCgE2/Ji43fSvBRru9dQqX5Te+sBAAAoZgTb8uDMYDFjpMRbpfa3210RAABAsSPYBrrc49KU0dKxI9ZgsbsfkxwOu6sCAAAodgTbQOYdLLZVqlyFwWIAACCgEWwD2ZIZ1mCxoGAGiwEAgIBHsA1UG78/O1jszqFS/Wb21gMAAFDCCLaBaP9u6Z2/SsYjJd5irS4GAAAQ4Ai2gSb3uDT1OWuwWO1G0l2PM1gMAACUCwTbQGKMNP3v0u4t1mCxQc9JoQwWAwAA5QPBNpAsnSH9sMwaLDaQwWIAAKB8IdgGivRV0idnVhb7g3QFg8UAAED5QrANBAf2SP/5y9nBYtd3t7siAACAUkewLevOXVmMwWIAAKAcI9iWZcZI08dbg8UqRUmDRjNYDAAAlFsE27Js2Szph6WnVxYbLUXVsLsiAAAA2xBsy6r0VdLHb1rbDBYDAAAg2JZJ5w4Wa5vMYDEAAAARbMuevBPSlOdODxZrKN09jMFiAAAAItiWLd6VxX45PVjsOQaLAQAAnEawLUs+/1BafWaw2CgGiwEAAJyDYFtWbFotzX3D2u45RLqiub31AAAA+BmCbVlwMMN3sFiHHnZXBAAA4HcItv4u74S1slhOtpRwFYPFAAAALqBIwXbixImqW7euwsLClJiYqJUrV/5m/8OHD2vo0KGKjY2Vy+XSVVddpfnz5/v02bVrl+69915Vq1ZN4eHhatasmb7//vuilBc4zqwstovBYgAAABcTUtgDpk+fruHDh2vy5MlKTEzUhAkTlJycrPT0dNWsWTNf/7y8PN10002qWbOmZs2apfj4eG3fvl1RUVHePocOHdL111+vLl266NNPP1WNGjW0efNmValS5bIursz7/ENp9ZKzg8Wq5P/nCwAAAIvDGGMKc0BiYqLatGmj1157TZLk8XiUkJCgxx57TCNGjMjXf/LkyXr55Ze1ceNGhYaGFnjOESNG6KuvvtKXX35ZhEuwZGdnKzIyUllZWYqIiCjyefzGxu+lN/9H8nikXkOlG3rZXREAAMBlKem8VqhXEfLy8rRq1SolJSWdPUFQkJKSkrRixYoCj5k7d67atWunoUOHKjo6Wk2bNtXYsWPldrt9+rRu3Vq9e/dWzZo1dc011+jNN98s4iWVcR6PlDr9bKhtc7PUsafdVQEAAPi9QgXb/fv3y+12Kzo62qc9OjpaGRkZBR6zZcsWzZo1S263W/Pnz9ezzz6rv//97/rLX/7i02fSpElq0KCBPvvsMw0ZMkSPP/643n777QvWkpubq+zsbJ9PmXf0sPTv/5U+edMKtdd2kXo/wWAxAACAS1Dod2wLy+PxqGbNmnrjjTcUHBysVq1aadeuXXr55Zc1evRob5/WrVtr7NixkqRrrrlGaWlpmjx5sgYOHFjgeceNG6cxY8aUdPml55d10jt/kbIOWAPEeg2VrruNUAsAAHCJCvXEtnr16goODlZmZqZPe2ZmpmJiYgo8JjY2VldddZWCg4O9bVdffbUyMjKUl5fn7dO4cWOf466++mrt2LHjgrWMHDlSWVlZ3s/OnTsLcyn+w+ORFr0nTXzKCrU1E6QnXpPadSPUAgAAFEKhgq3T6VSrVq2UmprqbfN4PEpNTVW7du0KPOb666/Xzz//LI/H423btGmTYmNj5XQ6vX3S09N9jtu0aZPq1KlzwVpcLpciIiJ8PmXOkUPSv0ZK86daiy+0TpKGvy7F1be7MgAAgDKn0PPYDh8+XG+++abefvttbdiwQUOGDFFOTo4GDRokSRowYIBGjhzp7T9kyBAdPHhQw4YN06ZNmzRv3jyNHTtWQ4cO9fZ58skn9c0332js2LH6+eef9f777+uNN97w6RNwNq+RXn5Y2rRKCnVJ/Z6W+o+QXOF2VwYAAFAmFfod2z59+mjfvn0aNWqUMjIy1LJlSy1YsMA7oGzHjh0KCjqblxMSEvTZZ5/pySefVPPmzRUfH69hw4bpmWee8fZp06aNPvroI40cOVLPP/+86tWrpwkTJqh///7FcIl+xuOWFr4nLXzXekobU1ca+KwUc+Gn0wAAALi4Qs9j66/KxDy2WQekd8dJP6+x9hNvke58VHKG2VoWAABAaSjpvFbisyLgtPRVVqg9etgKsr2fsN6pBQAAQLEg2JY0t1v67G1p8QeSMdbAsIHPWrMfAAAAoNgQbEvS4X3SO2OlLeus/Xa3Sz2HSE6XvXUBAAAEIIJtSdmwUnrvBSknW3JVkPo8KV3Txe6qAAAAAhbBtri5T1nz0i6Zbu3XaiAN+F+pRry9dQEAAAQ4gm1xOpQp/eev0rb11n6HHlKPh6UQp711AQAAlAME2+KS9rX0wcvSsSNSWEWp71NSixvsrgoAAKDcINherlMnpU/+LX3+obVfu6H16kG1WHvrAgAAKGcItpfjwB7r1YMdG639TndJt/9eCgm1ty4AAIByiGBbVGu/lD74m3QiR6pQWer3tNS0vd1VAQAAlFsE26L4+hNp5gRru25j6b4/S1WjbS0JAACgvAuyu4Ayqdn1UmQ16cY+0qPjCbUAAAB+gCe2RVG5ivRMihReye5KAAAAcBpPbIuKUAsAAOBXCLYAAAAICARbAAAABASCLQAAAAICwRYAAAABgWALAACAgECwBQAAQEAg2AIAACAgEGwBAAAQEAi2AAAACAgEWwAAAAQEgi0AAAACAsEWAAAAAYFgCwAAgIAQYncBxcUYI0nKzs62uRIAAAAU5ExOO5PbilvABNsjR45IkhISEmyuBAAAAL/lyJEjioyMLPbzOkxJReZS5vF4tHv3blWuXFlHjhxRQkKCdu7cqYiICLtLQwnKzs7mXpcD3Ofyg3tdPnCfy4/z77UxRkeOHFFcXJyCgor/jdiAeWIbFBSkWrVqSZIcDockKSIign9hygnudfnAfS4/uNflA/e5/Dj3XpfEk9ozGDwGAACAgECwBQAAQEAIyGDrcrk0evRouVwuu0tBCeNelw/c5/KDe10+cJ/Lj9K+1wEzeAwAAADlW0A+sQUAAED5Q7AFAABAQCDYAgAAICAQbAEAABAQAjLYTpw4UXXr1lVYWJgSExO1cuVKu0vCb/jiiy90xx13KC4uTg6HQ3PmzPH53hijUaNGKTY2VuHh4UpKStLmzZt9+hw8eFD9+/dXRESEoqKiNHjwYB09etSnz9q1a9WxY0eFhYUpISFBL730UklfGs4xbtw4tWnTRpUrV1bNmjXVs2dPpaen+/Q5ceKEhg4dqmrVqqlSpUq66667lJmZ6dNnx44d6tatmypUqKCaNWvq6aef1qlTp3z6LFu2TNdee61cLpeuvPJKvfXWWyV9eTht0qRJat68uXcy9nbt2unTTz/1fs89DlwvvPCCHA6HnnjiCW8b97vse+655+RwOHw+jRo18n7vd/fYBJhp06YZp9NppkyZYn766Sfz4IMPmqioKJOZmWl3abiA+fPnmz//+c9m9uzZRpL56KOPfL5/4YUXTGRkpJkzZ4758ccfTffu3U29evXM8ePHvX1uueUW06JFC/PNN9+YL7/80lx55ZWmX79+3u+zsrJMdHS06d+/v0lLSzMffPCBCQ8PN//6179K6zLLveTkZDN16lSTlpZm1qxZY2677TZTu3Ztc/ToUW+fRx55xCQkJJjU1FTz/fffm+uuu860b9/e+/2pU6dM06ZNTVJSkvnhhx/M/PnzTfXq1c3IkSO9fbZs2WIqVKhghg8fbtavX29effVVExwcbBYsWFCq11tezZ0718ybN89s2rTJpKenm//5n/8xoaGhJi0tzRjDPQ5UK1euNHXr1jXNmzc3w4YN87Zzv8u+0aNHmyZNmpg9e/Z4P/v27fN+72/3OOCCbdu2bc3QoUO9+26328TFxZlx48bZWBUu1fnB1uPxmJiYGPPyyy972w4fPmxcLpf54IMPjDHGrF+/3kgy3333nbfPp59+ahwOh9m1a5cxxpjXX3/dVKlSxeTm5nr7PPPMM6Zhw4YlfEW4kL179xpJ5vPPPzfGWPc1NDTUzJw509tnw4YNRpJZsWKFMcb6P0FBQUEmIyPD22fSpEkmIiLCe2//9Kc/mSZNmvj8rj59+pjk5OSSviRcQJUqVcy///1v7nGAOnLkiGnQoIFZtGiR6dSpkzfYcr8Dw+jRo02LFi0K/M4f73FAvYqQl5enVatWKSkpydsWFBSkpKQkrVixwsbKUFRbt25VRkaGzz2NjIxUYmKi956uWLFCUVFRat26tbdPUlKSgoKC9O2333r73HDDDXI6nd4+ycnJSk9P16FDh0rpanCurKwsSVLVqlUlSatWrdLJkyd97nWjRo1Uu3Ztn3vdrFkzRUdHe/skJycrOztbP/30k7fPuec404c/A0qf2+3WtGnTlJOTo3bt2nGPA9TQoUPVrVu3fPeE+x04Nm/erLi4ONWvX1/9+/fXjh07JPnnPQ6oYLt//3653W6ff3iSFB0drYyMDJuqwuU4c99+655mZGSoZs2aPt+HhISoatWqPn0KOse5vwOlx+Px6IknntD111+vpk2bSrLug9PpVFRUlE/f8+/1xe7jhfpkZ2fr+PHjJXE5OM+6detUqVIluVwuPfLII/roo4/UuHFj7nEAmjZtmlavXq1x48bl+477HRgSExP11ltvacGCBZo0aZK2bt2qjh076siRI355j0MK1RsAisHQoUOVlpam5cuX210KSkDDhg21Zs0aZWVladasWRo4cKA+//xzu8tCMdu5c6eGDRumRYsWKSwszO5yUEJuvfVW73bz5s2VmJioOnXqaMaMGQoPD7exsoIF1BPb6tWrKzg4ON9ovMzMTMXExNhUFS7Hmfv2W/c0JiZGe/fu9fn+1KlTOnjwoE+fgs5x7u9A6Xj00Uf1ySefaOnSpapVq5a3PSYmRnl5eTp8+LBP//Pv9cXu44X6RERE+OUfwoHI6XTqyiuvVKtWrTRu3Di1aNFC//znP7nHAWbVqlXau3evrr32WoWEhCgkJESff/65XnnlFYWEhCg6Opr7HYCioqJ01VVX6eeff/bLf6cDKtg6nU61atVKqamp3jaPx6PU1FS1a9fOxspQVPXq1VNMTIzPPc3Ozta3337rvaft2rXT4cOHtWrVKm+fJUuWyOPxKDEx0dvniy++0MmTJ719Fi1apIYNG6pKlSqldDXlmzFGjz76qD766CMtWbJE9erV8/m+VatWCg0N9bnX6enp2rFjh8+9Xrdunc//kVm0aJEiIiLUuHFjb59zz3GmD38G2Mfj8Sg3N5d7HGC6du2qdevWac2aNd5P69at1b9/f+829zvwHD16VL/88otiY2P989/pQg8383PTpk0zLpfLvPXWW2b9+vXmoYceMlFRUT6j8eBfjhw5Yn744Qfzww8/GElm/Pjx5ocffjDbt283xljTfUVFRZn//ve/Zu3ataZHjx4FTvd1zTXXmG+//dYsX77cNGjQwGe6r8OHD5vo6Ghz3333mbS0NDNt2jRToUIFpvsqRUOGDDGRkZFm2bJlPtPGHDt2zNvnkUceMbVr1zZLliwx33//vWnXrp1p166d9/sz08bcfPPNZs2aNWbBggWmRo0aBU4b8/TTT5sNGzaYiRMnMjVQKRoxYoT5/PPPzdatW83atWvNiBEjjMPhMAsXLjTGcI8D3bmzIhjD/Q4ETz31lFm2bJnZunWr+eqrr0xSUpKpXr262bt3rzHG/+5xwAVbY4x59dVXTe3atY3T6TRt27Y133zzjd0l4TcsXbrUSMr3GThwoDHGmvLr2WefNdHR0cblcpmuXbua9PR0n3McOHDA9OvXz1SqVMlERESYQYMGmSNHjvj0+fHHH02HDh2My+Uy8fHx5oUXXiitS4QxBd5jSWbq1KnePsePHzd/+MMfTJUqVUyFChVMr169zJ49e3zOs23bNnPrrbea8PBwU716dfPUU0+ZkydP+vRZunSpadmypXE6naZ+/fo+vwMl64EHHjB16tQxTqfT1KhRw3Tt2tUbao3hHge684Mt97vs69Onj4mNjTVOp9PEx8ebPn36mJ9//tn7vb/dY4cxxhT+OS8AAADgXwLqHVsAAACUXwRbAAAABASCLQAAAAICwRYAAAABgWALAACAgECwBQAAQEAg2AIAACAgEGwBAAAQEAi2AAAACAgEWwAAAAQEgi0AAAACAsEWAAAAAeH/AY3XyWwvO3YcAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAHDCAYAAADRBFkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNTUlEQVR4nO3deXxU5d3///dkmwRIhkDIRgKELQgIKCLEBVBSAlol1XorVQFFrRS+t/yq1tLbXdsgWlusFbUV0NtiXCrUG1lENjcWQZBVBNkhCQokIQGSkFy/P04yZEgC2c9k8no+Hqdz5pxrZj6HU+2bq9e5LocxxggAAABo4vzsLgAAAACoDwRbAAAA+ASCLQAAAHwCwRYAAAA+gWALAAAAn0CwBQAAgE8g2AIAAMAnEGwBAADgEwi2AAAA8AkEWwAAAPgEgi0AnMfevXvlcDg0e/ZsW35/9uzZcjgc2rt3b6P/9pNPPimHw9HovwsAtUWwBQAv8Kc//Unz5s2zuwzdfPPNuu666+wuAwBqhWALAF6gqmB755136tSpU+rYsWOD11BUVKQlS5bo+uuvb/DfAoCGEGB3AQCAqvn7+8vf379Rfuvzzz/XiRMnCLYAmix6bAE0KYcOHdLdd9+tqKgoOZ1O9erVSzNnzpQkZWVlKSAgQE899VSFz+3YsUMOh0Mvv/yyJOnYsWN66KGHdPHFF6tVq1YKCwvTyJEj9e23316whqFDh2ro0KEVjo8bN06dOnXyOPbCCy/oiiuuUNu2bRUSEqL+/fvrgw8+8GjjcDiUn5+vN998Uw6HQw6HQ+PGjZNU9RjbV155Rb169ZLT6VRsbKwmTpyo7OzsCnX27t1b27Zt0zXXXKMWLVqoffv2mjZtWqXX9fHHH6tnz54VrqG8M2fO6JlnnlGXLl3kdDrVqVMn/eEPf1BBQYFHu3Xr1iklJUUREREKCQlRQkKC7r77bo826enp6t+/v0JDQxUWFqaLL75Y06dPr/K3AeBC6LEF0GRkZWVp0KBBcjgcmjRpktq1a6eFCxdq/Pjxys3N1eTJkzVkyBC99957euKJJzw+++6778rf31+33HKLJGn37t2aN2+ebrnlFiUkJCgrK0uvvfaahgwZom3btik2NrZeap4+fbpuvPFG3X777SosLFR6erpuueUWzZ8/390z+r//+7+65557dPnll+u+++6TJHXp0qXK73zyySf11FNPKTk5WRMmTNCOHTs0Y8YMff311/ryyy8VGBjobnv8+HGNGDFCN910k/7rv/5LH3zwgR555BFdfPHFGjlypMf3LliwQD//+c/Pez333HOP3nzzTf3yl7/Ugw8+qDVr1igtLU3bt2/X3LlzJUlHjhzR8OHD1a5dO/3+979X69attXfvXn344Yfu71myZIlGjx6tYcOG6bnnnpMkbd++XV9++aUeeOCBGvwJA0A5BgCaiPHjx5uYmBjz008/eRy/7bbbjMvlMidPnjSvvfaakWQ2b97s0aZnz57m2muvdb8/ffq0KS4u9mizZ88e43Q6zdNPP+1xTJKZNWuW+9iQIUPMkCFDKtQ3duxY07FjR49jJ0+e9HhfWFhoevfu7VGLMca0bNnSjB07tsJ3zpo1y0gye/bsMcYYc+TIERMUFGSGDx/uUf/LL79sJJmZM2d61CnJvPXWW+5jBQUFJjo62tx8880ev7N7924jySxfvtx97IknnjDl/2di48aNRpK55557PD770EMPGUlm2bJlxhhj5s6daySZr7/+usL1lHnggQdMWFiYOXPmTJVtAKCmGIoAoEkwxujf//63brjhBhlj9NNPP7m3lJQU5eTk6JtvvtFNN92kgIAAvfvuu+7PbtmyRdu2bdOtt97qPuZ0OuXnZ/0rsLi4WEePHlWrVq2UmJiob775pt7qDgkJce8fP35cOTk5uvrqq2v9G59++qkKCws1efJkd/2SdO+99yosLEwff/yxR/tWrVrpjjvucL8PCgrS5Zdfrt27d3u0+/jjj+VyuXTVVVdV+dsLFiyQJP32t7/1OP7ggw+6v0OSWrduLUmaP3++ioqKKv2u1q1bKz8/X0uWLDnf5QJAjRBsATQJP/74o7Kzs/X666+rXbt2Httdd90lyfq/wCMiIjRs2DC999577s++++67CggI0E033eQ+VlJSor/85S/q1q2bnE6nIiIi1K5dO23atEk5OTn1Vvf8+fM1aNAgBQcHq02bNmrXrp1mzJhR69/Yt2+fJCkxMdHjeFBQkDp37uw+XyYuLq7CXLTh4eE6fvy4x7GPP/5Yw4cPV0BA1SPU9u3bJz8/P3Xt2tXjeHR0tFq3bu3+7SFDhujmm2/WU089pYiICI0aNUqzZs3yGIf7m9/8Rt27d9fIkSMVFxenu+++W4sWLarmnwIAVI5gC6BJKCkpkSTdcccdWrJkSaXblVdeKUm67bbb9P3332vjxo2SpPfee0/Dhg1TRESE+/v+9Kc/6be//a0GDx6st99+W4sXL9aSJUvUq1cv929VpapFC4qLiz3ef/7557rxxhsVHBysV155RQsWLNCSJUv0q1/9SsaY2v5R1EhVMyqU//2TJ09qxYoV1Z6/9kKLNjgcDn3wwQdatWqVJk2a5H7gr3///srLy5MkRUZGauPGjfroo4904403avny5Ro5cqTGjh1bzSsDgIp4eAxAk9CuXTuFhoaquLhYycnJ522bmpqqX//61+7hCN9//72mTJni0eaDDz7QNddcozfeeMPjeHZ2tkcArkx4eHiF/ytfUoXe0n//+98KDg7W4sWL5XQ63cdnzZpV4bPVXeGrbD7bHTt2qHPnzu7jhYWF2rNnzwX/bCqzbNkyFRQUVHiYrLLfLikp0c6dO3XRRRe5j2dlZSk7O7vCXLuDBg3SoEGD9Mc//lFz5szR7bffrvT0dN1zzz2SrF7mG264QTfccINKSkr0m9/8Rq+99poee+yxCr3CAFAd9NgCaBL8/f11880369///re2bNlS4fyPP/7o3m/durVSUlL03nvvKT09XUFBQUpNTa3wfef2mr7//vs6dOjQBWvp0qWLvvvuO4/f/Pbbb/Xll19W+A2Hw+HRk7t3795KF2Jo2bJlhem6KpOcnKygoCC99NJLHvW/8cYbysnJqdUctAsWLNBll12mqKio87Yr69H961//6nH8xRdflCT3bx8/frzCn22/fv0kyT0c4ejRox7n/fz81KdPH482AFBT9NgCaDKmTp2q5cuXa+DAgbr33nvVs2dPHTt2TN98840+/fRTHTt2zN321ltv1R133KFXXnlFKSkp7geayvz85z/X008/rbvuuktXXHGFNm/erH/9618evaBVufvuu/Xiiy8qJSVF48eP15EjR/Tqq6+qV69eys3Ndbe7/vrr9eKLL2rEiBH61a9+pSNHjujvf/+7unbtqk2bNnl8Z//+/fXpp5/qxRdfVGxsrBISEjRw4MAKv92uXTtNmTJFTz31lEaMGKEbb7xRO3bs0CuvvKIBAwZ4PChWXQsWLHCPUz6fvn37auzYsXr99deVnZ2tIUOGaO3atXrzzTeVmpqqa665RpL05ptv6pVXXtEvfvELdenSRSdOnNA//vEPhYWFucPxPffco2PHjunaa69VXFyc9u3bp7/97W/q16+fR28wANSIjTMyAECNZWVlmYkTJ5r4+HgTGBhooqOjzbBhw8zrr7/u0S43N9eEhIQYSebtt9+u8D2nT582Dz74oImJiTEhISHmyiuvNKtWraowlVdl030ZY8zbb79tOnfubIKCgky/fv3M4sWLK53u64033jDdunUzTqfT9OjRw8yaNavCNFrGGPPdd9+ZwYMHu2sum/rr3Om+yrz88sumR48eJjAw0ERFRZkJEyaY48ePe7QZMmSI6dWrV4VrL1/nli1bjCSzdu3aCu0qq7OoqMg89dRTJiEhwQQGBpr4+HgzZcoUc/r0aXebb775xowePdp06NDBOJ1OExkZaX7+85+bdevWudt88MEHZvjw4SYyMtIEBQWZDh06mF//+tcmIyOjQh0AUF0OYxrpCQYAgNeZNm2aXnzxRWVkZFR7nC8AeCvG2AJAM9apUyf95S9/IdQC8An02AIAAMAn0GMLAAAAn0CwBQAAgE8g2AIAAMAn+MQ8tiUlJTp8+LBCQ0N5AAIAAMALGWN04sQJxcbGys+vYfpWfSLYHj58WPHx8XaXAQAAgAs4cOCA4uLiGuS7fSLYhoaGSrL+oMLCwmyuBgAAAOfKzc1VfHy8O7c1BJ8ItmXDD8LCwgi2AAAAXqwhh43y8BgAAAB8AsEWAAAAPoFgCwAAAJ9AsAUAAIBPINgCAADAJ9Qo2M6YMUN9+vRxzz6QlJSkhQsXVtl+9uzZcjgcHltwcLBHG2OMHn/8ccXExCgkJETJycnauXNn7a4GAAAAzVaNgm1cXJymTp2q9evXa926dbr22ms1atQobd26tcrPhIWFKSMjw73t27fP4/y0adP00ksv6dVXX9WaNWvUsmVLpaSk6PTp07W7IgAAADRLNZrH9oYbbvB4/8c//lEzZszQ6tWr1atXr0o/43A4FB0dXek5Y4z++te/6tFHH9WoUaMkSW+99ZaioqI0b9483XbbbTUpDwAAAM1YrcfYFhcXKz09Xfn5+UpKSqqyXV5enjp27Kj4+PgKvbt79uxRZmamkpOT3cdcLpcGDhyoVatW1bY0AAAANEM1Xnls8+bNSkpK0unTp9WqVSvNnTtXPXv2rLRtYmKiZs6cqT59+ignJ0cvvPCCrrjiCm3dulVxcXHKzMyUJEVFRXl8Lioqyn2uMgUFBSooKHC/z83NrellAAAAwMfUuMc2MTFRGzdu1Jo1azRhwgSNHTtW27Ztq7RtUlKSxowZo379+mnIkCH68MMP1a5dO7322mt1KjotLU0ul8u9xcfH1+n7AAAA0PTVONgGBQWpa9eu6t+/v9LS0tS3b19Nnz69Wp8NDAzUJZdcol27dkmSe+xtVlaWR7usrKwqx+VK0pQpU5STk+PeDhw4UNPLAAAAgI+p8zy2JSUlHsMCzqe4uFibN29WTEyMJCkhIUHR0dFaunSpu01ubq7WrFlz3nG7TqfTPeVY2QYAAIDmrUZjbKdMmaKRI0eqQ4cOOnHihObMmaMVK1Zo8eLFkqQxY8aoffv2SktLkyQ9/fTTGjRokLp27ars7Gw9//zz2rdvn+655x5J1owJkydP1rPPPqtu3bopISFBjz32mGJjY5Wamlq/V1qfigqlPVuk4BZShx52VwMAAADVMNgeOXJEY8aMUUZGhlwul/r06aPFixfrZz/7mSRp//798vM72wl8/Phx3XvvvcrMzFR4eLj69++vr776yuNhs9/97nfKz8/Xfffdp+zsbF111VVatGhRhYUcvMrSd6TF/ytdco005n/srgYAAACSHMYYY3cRdZWbmyuXy6WcnJzGGZawe4v0t8lSyzDp6Q8kP1YmBgAAOJ/GyGskstro2MMahpCfKx3aZXc1AAAAEMG2dvwDpG6XWPs71tlbCwAAACQRbGsvsb/1umO9vXUAAABAEsG29rqXBts9W6WCU/bWAgAAAIJtrUXESm2ipeIz0q5v7a4GAACg2SPY1pbDISVeZu0zHAEAAMB2BNu66FE6HOF7gi0AAIDdCLZ10e0SyeEnZe2Xjh+xuxoAAIBmjWBbFyGtrDltJXptAQAAbEawrSum/QIAAPAKBNu66l4u2JYU21sLAABAM0awrauy5XVPnpAOsrwuAACAXQi2deWxvC7DEQAAAOxCsK0PiUz7BQAAYDeCbX0oW6iB5XUBAABsQ7CtDxGxUtsYltcFAACwEcG2vjDtFwAAgK0ItvWFYAsAAGArgm19KVte98h+6XiW3dUAAAA0OwTb+lJ+ed0d39hbCwAAQDNEsK1P7uEI6+ytAwAAoBki2Nansmm/vv+G5XUBAAAaGcG2PnVgeV0AAAC7EGzrk7+/1O1Sa5/ZEQAAABoVwba+JZYFW8bZAgAANCaCbX0rG2e7d5t0+qS9tQAAADQjBNv6Vn553R822V0NAABAs0GwbQhM+wUAANDoCLYNoWw4Ags1AAAANBqCbUPo1k/yY3ldAACAxkSwbQghraQOF1n79NoCAAA0CoJtQ2GcLQAAQKMi2DaUsmDL8roAAACNgmDbUDyW191pdzUAAAA+j2DbUFheFwAAoFERbBuSe5wtwRYAAKChEWwbUlmwZXldAACABkewbUgRsdbG8roAAAANrkbBdsaMGerTp4/CwsIUFhampKQkLVy4sMr2//jHP3T11VcrPDxc4eHhSk5O1tq1az3ajBs3Tg6Hw2MbMWJE7a7GGzHtFwAAQKOoUbCNi4vT1KlTtX79eq1bt07XXnutRo0apa1bt1bafsWKFRo9erSWL1+uVatWKT4+XsOHD9ehQ4c82o0YMUIZGRnu7Z133qn9FXmb7oyzBQAAaAwOY4ypyxe0adNGzz//vMaPH3/BtsXFxQoPD9fLL7+sMWPGSLJ6bLOzszVv3rxa15CbmyuXy6WcnByFhYXV+nsaxKk86dGbpJIS6bF/SW2i7K4IAACg0TVGXqv1GNvi4mKlp6crPz9fSUlJ1frMyZMnVVRUpDZt2ngcX7FihSIjI5WYmKgJEybo6NGj5/2egoIC5ebmemxeq/zyut/TawsAANBQahxsN2/erFatWsnpdOr+++/X3Llz1bNnz2p99pFHHlFsbKySk5Pdx0aMGKG33npLS5cu1XPPPaeVK1dq5MiRKi6uerWutLQ0uVwu9xYfH1/Ty2hcZeNsv2OcLQAAQEOp8VCEwsJC7d+/Xzk5Ofrggw/0z3/+UytXrrxguJ06daqmTZumFStWqE+fPlW22717t7p06aJPP/1Uw4YNq7RNQUGBCgoK3O9zc3MVHx/vnUMRJGu6r+n/LbUIlZ75QPLzt7siAACARuWVQxGCgoLUtWtX9e/fX2lpaerbt6+mT59+3s+88MILmjp1qj755JPzhlpJ6ty5syIiIrRr164q2zidTvfMDGWbV4tPlIJbsrwuAABAA6rzPLYlJSUevafnmjZtmp555hktWrRIl1122QW/7+DBgzp69KhiYmLqWpr38PeXul9i7TM7AgAAQIOoUbCdMmWKPvvsM+3du1ebN2/WlClTtGLFCt1+++2SpDFjxmjKlCnu9s8995wee+wxzZw5U506dVJmZqYyMzOVl5cnScrLy9PDDz+s1atXa+/evVq6dKlGjRqlrl27KiUlpR4v0wsw7RcAAECDCqhJ4yNHjmjMmDHKyMiQy+VSnz59tHjxYv3sZz+TJO3fv19+fmez8owZM1RYWKhf/vKXHt/zxBNP6Mknn5S/v782bdqkN998U9nZ2YqNjdXw4cP1zDPPyOl01sPleZGyB8j2bLWW1w1uYW89AAAAPqbO89h6A6+ex7a8P46RfjosjX9G6l29KdIAAAB8gVc+PIY6YHldAACABkOwbUyJpQ/PMc4WAACg3hFsG1PXvpKfn/TjQelYlt3VAAAA+BSCbWMKaSV1ZHldAACAhkCwbWzdWV4XAACgIRBsG1uP0nG2OzdIJcX21gIAAOBDCLaNrfzyugdYXhcAAKC+EGwbm8fyugxHAAAAqC8EWzsw7RcAAEC9I9jaoWyhhr3brOV1AQAAUGcEWzu0jZEi2lsPj+361u5qAAAAfALB1i6Jl1qvjLMFAACoFwRbuzDOFgAAoF4RbO3isbxupt3VAAAANHkEW7uUX16XXlsAAIA6I9jaieEIAAAA9YZga6eyab9YXhcAAKDOCLZ2ik+0hiSwvC4AAECdEWzt5O8vdWN5XQAAgPpAsLVb2XAExtkCAADUCcHWbh7L6+bbWwsAAEATRrC1G8vrAgAA1AuCrTdgOAIAAECdEWy9gTvY8gAZAABAbRFsvUG3fqXL6x5ieV0AAIBaIth6g+CWUsee1j7DEQAAAGqFYOstGGcLAABQJwRbb1EWbL//huV1AQAAaoFg6y3Kltc9lScd+N7uagAAAJocgq238Fhel+EIAAAANUWw9SZlwxG+Y9ovAACAmiLYepOyYLuP5XUBAABqimDrTdrGSO3aSyUlLK8LAABQQwRbb9Odab8AAABqg2DrbVheFwAAoFYItt6m/PK6RzPsrgYAAKDJINh6G5bXBQAAqJUaBdsZM2aoT58+CgsLU1hYmJKSkrRw4cLzfub9999Xjx49FBwcrIsvvlgLFizwOG+M0eOPP66YmBiFhIQoOTlZO3furPmV+JIel1mvBFsAAIBqq1GwjYuL09SpU7V+/XqtW7dO1157rUaNGqWtW7dW2v6rr77S6NGjNX78eG3YsEGpqalKTU3Vli1b3G2mTZuml156Sa+++qrWrFmjli1bKiUlRadPn67blTVlZeNsd26QilleFwAAoDocxhhTly9o06aNnn/+eY0fP77CuVtvvVX5+fmaP3+++9igQYPUr18/vfrqqzLGKDY2Vg8++KAeeughSVJOTo6ioqI0e/Zs3XbbbdWqITc3Vy6XSzk5OQoLC6vL5XiHkmLp0Zut5XX/e7qU0MvuigAAAOqkMfJarcfYFhcXKz09Xfn5+UpKSqq0zapVq5ScnOxxLCUlRatWrZIk7dmzR5mZmR5tXC6XBg4c6G7TLPn5nx2OsG2NvbUAAAA0ETUOtps3b1arVq3kdDp1//33a+7cuerZs2elbTMzMxUVFeVxLCoqSpmZme7zZceqalOZgoIC5ebmemw+p+cg63XbanvrAAAAaCJqHGwTExO1ceNGrVmzRhMmTNDYsWO1bdu2hqitSmlpaXK5XO4tPj6+UX+/UfQYIDn8pMO7peNH7K4GAADA69U42AYFBalr167q37+/0tLS1LdvX02fPr3SttHR0crKyvI4lpWVpejoaPf5smNVtanMlClTlJOT494OHDhQ08vwfq1cUqeLrH2GIwAAAFxQneexLSkpUUFBQaXnkpKStHTpUo9jS5YscY/JTUhIUHR0tEeb3NxcrVmzpspxu5LkdDrdU46VbT6J4QgAAADVFlCTxlOmTNHIkSPVoUMHnThxQnPmzNGKFSu0ePFiSdKYMWPUvn17paWlSZIeeOABDRkyRH/+8591/fXXKz09XevWrdPrr78uSXI4HJo8ebKeffZZdevWTQkJCXrssccUGxur1NTU+r3SpqjXIOnjN6xpvwpPS0HBdlcEAADgtWoUbI8cOaIxY8YoIyNDLpdLffr00eLFi/Wzn/1MkrR//375+Z3tBL7iiis0Z84cPfroo/rDH/6gbt26ad68eerdu7e7ze9+9zvl5+frvvvuU3Z2tq666iotWrRIwcGEOEV3ksKjpONZ0s6NVtAFAABApeo8j6038Ll5bMv74CXpy4+kpJ9L/zXZ7moAAABqxavnsUUj6VVunG3T/zsIAABAgyHYeruu/ayxtTk/SYd/sLsaAAAAr0Ww9XaBQVL3S6x9pv0CAACoEsG2KSib9msr034BAABUhWDbFFw00Hrd/5104ri9tQAAAHgpgm1T0DpCiutmPTy2/Wu7qwEAAPBKBNumomdpry2rkAEAAFSKYNtUlI2z/W6ddKbI3loAAAC8EMG2qYjvLrVqLRWclHZvtrsaAAAAr0OwbSr8/MoNR2DaLwAAgHMRbJuS8quQAQAAwAPBtinp3l/yD5B+PCQdOWh3NQAAAF6FYNuUBLeQuvS19um1BQAA8ECwbWrKxtmyChkAAIAHgm1TUzbOdvdm6VSevbUAAAB4EYJtUxMRK0V2kEqKrTltAQAAIIlg2zT1YtovAACAcxFsm6KyVci2r7V6bgEAAECwbZISekkhraT8HGn/DrurAQAA8AoE26bIP0DqMcDaZ3YEAAAASQTbpotVyAAAADwQbJuqHpdJDj/p8G7peJbd1QAAANiOYNtUtXRJnS6y9pkdAQAAgGDbpJXNjkCwBQAAINg2aWXjbHdukApP21sLAACAzQi2TVl0Jyk8SioqlHZutLsaAAAAWxFsmzKH42yvLdN+AQCAZo5g29T1LFted7VkjL21AAAA2Ihg29R17ScFBUs5P0mHf7C7GgAAANsQbJu6wCCp+yXWPsMRAABAM0aw9QU9WYUMAACAYOsLLiodZ7t/h3TiuL21AAAA2IRg6wtaR0hx3ayHx7Z/bXc1AAAAtiDY+gqGIwAAgGaOYOsrepUOR/hunXSmyN5aAAAAbECw9RVx3aXQcKngpLR7s93VAAAANDqCra/w85MuutzaZ9ovAADQDBFsfUnZ8rrb1thbBwAAgA1qFGzT0tI0YMAAhYaGKjIyUqmpqdqxY8d5PzN06FA5HI4K2/XXX+9uM27cuArnR4wYUbsras6695f8A6SfDklHDtpdDQAAQKOqUbBduXKlJk6cqNWrV2vJkiUqKirS8OHDlZ+fX+VnPvzwQ2VkZLi3LVu2yN/fX7fccotHuxEjRni0e+edd2p3Rc1ZcAupS19rn9kRAABAMxNQk8aLFi3yeD979mxFRkZq/fr1Gjx4cKWfadOmjcf79PR0tWjRokKwdTqdio6Orkk5qEyvQdL3661xtkN/aXc1AAAAjaZOY2xzcnIkVQyv5/PGG2/otttuU8uWLT2Or1ixQpGRkUpMTNSECRN09OjRKr+joKBAubm5HhtK9Syd9mv3ZulUnr21AAAANKJaB9uSkhJNnjxZV155pXr37l2tz6xdu1ZbtmzRPffc43F8xIgReuutt7R06VI999xzWrlypUaOHKni4uJKvyctLU0ul8u9xcfH1/YyfE9ErBTVQSoptua0BQAAaCYcxhhTmw9OmDBBCxcu1BdffKG4uLhqfebXv/61Vq1apU2bNp233e7du9WlSxd9+umnGjZsWIXzBQUFKigocL/Pzc1VfHy8cnJyFBYWVrML8UUfvSYtf1+6LFm6/fd2VwMAAKDc3Fy5XK4GzWu16rGdNGmS5s+fr+XLl1c71Obn5ys9PV3jx4+/YNvOnTsrIiJCu3btqvS80+lUWFiYx4ZyypbX3b7W6rkFAABoBmoUbI0xmjRpkubOnatly5YpISGh2p99//33VVBQoDvuuOOCbQ8ePKijR48qJiamJuWhTEIvKaSVlJ8r7T//dGwAAAC+okbBduLEiXr77bc1Z84chYaGKjMzU5mZmTp16pS7zZgxYzRlypQKn33jjTeUmpqqtm3behzPy8vTww8/rNWrV2vv3r1aunSpRo0apa5duyolJaWWl9XM+QdIPQZY+6xCBgAAmokaBdsZM2YoJydHQ4cOVUxMjHt799133W3279+vjIwMj8/t2LFDX3zxRaXDEPz9/bVp0ybdeOON6t69u8aPH6/+/fvr888/l9PprOVl4ewqZARbAADQPNRoHtvqPGe2YsWKCscSExOr/GxISIgWL15ckzJQHT0ukxx+0uHd0vEsKTzK7ooAAAAaVJ3msYUXa+mSOvW09retsbcWAACARkCw9WVlizUwzhYAADQDBFtfVjbOducGqeDU+dsCAAA0cQRbXxbdyRpbe6ZI2rnR7moAAAAaFMHWlzkc5WZHYJwtAADwbQRbX1c2znbbaql2qycDAAA0CQRbX9e1nxQULOX8JB3+we5qAAAAGgzB1tcFBkndL7X2mR0BAAD4MIJtc1B+OAIAAICPItg2BxeVBtv9O6QTx+2tBQAAoIEQbJuD1hFSXDfr4bHta+2uBgAAoEEQbJuLnkz7BQAAfBvBtrnoVToc4bt11oINAAAAPoZg21zEdZdCw6WCk9LuzXZXAwAAUO8Its2Fn9/Z2RGY9gsAAPgggm1zwipkAADAhxFsm5Pu/SX/AOmnw9KPB+2uBgAAoF4RbJuT4BZSl77WPsMRAACAjyHYNje9mPYLAAD4JoJtc1M2znb3ZulUnr21AAAA1COCbXMTEStFdZBKiq05bQEAAHwEwbY5cq9CxjhbAADgOwi2zVHZONvta62eWwAAAB9AsG2OOvWSQlpJ+bnSvu/srgYAAKBeEGybI39/qccAa3/rKntrAQAAqCcE2+aqd5L1umGFVFJiaykAAAD1gWDbXPW+QgpuKR3LlHZttLsaAACAOiPYNldBwVL/Ydb+6oX21gIAAFAPCLbN2aCR1uumL6T8HHtrAQAAqCOCbXMW183aioukdZ/aXQ0AAECdEGybu7Je29ULJWPsrQUAAKAOCLbN3aXXSoFOKXOvtG+73dUAAADUGsG2uQtpJfUdbO3zEBkAAGjCCLaQBl1nvW5YLp0+aW8tAAAAtUSwhdS5t9QuTio8LW1cYXc1AAAAtUKwheRwlHuIbIG9tQAAANQSwRaWAcMlP39p33fS4d12VwMAAFBjNQq2aWlpGjBggEJDQxUZGanU1FTt2LHjvJ+ZPXu2HA6HxxYcHOzRxhijxx9/XDExMQoJCVFycrJ27txZ86tB7YWGW8vsStKaRfbWAgAAUAs1CrYrV67UxIkTtXr1ai1ZskRFRUUaPny48vPzz/u5sLAwZWRkuLd9+/Z5nJ82bZpeeuklvfrqq1qzZo1atmyplJQUnT59uuZXhNorG46wbolUVGhvLQAAADUUUJPGixZ59uTNnj1bkZGRWr9+vQYPHlzl5xwOh6Kjoys9Z4zRX//6Vz366KMaNWqUJOmtt95SVFSU5s2bp9tuu60mJaIuEvtLrdtJ2T9Km7+ULr3G7ooAAACqrU5jbHNyciRJbdq0OW+7vLw8dezYUfHx8Ro1apS2bt3qPrdnzx5lZmYqOTnZfczlcmngwIFatWpVXcpDTfn5SwNHWPs8RAYAAJqYWgfbkpISTZ48WVdeeaV69+5dZbvExETNnDlT//nPf/T222+rpKREV1xxhQ4ePChJyszMlCRFRUV5fC4qKsp97lwFBQXKzc312FBPLh9hzZKwc4P002G7qwEAAKi2WgfbiRMnasuWLUpPTz9vu6SkJI0ZM0b9+vXTkCFD9OGHH6pdu3Z67bXXavvTSktLk8vlcm/x8fG1/i6co02UNSRB4iEyAADQpNQq2E6aNEnz58/X8uXLFRcXV6PPBgYG6pJLLtGuXbskyT32Nisry6NdVlZWleNyp0yZopycHPd24MCBWlwFqjSwdCWytYul4mJ7awEAAKimGgVbY4wmTZqkuXPnatmyZUpISKjxDxYXF2vz5s2KiYmRJCUkJCg6OlpLly51t8nNzdWaNWuUlJRU6Xc4nU6FhYV5bKhHvZOkli4p96i0fa3d1QAAAFRLjYLtxIkT9fbbb2vOnDkKDQ1VZmamMjMzderUKXebMWPGaMqUKe73Tz/9tD755BPt3r1b33zzje644w7t27dP99xzjyRrxoTJkyfr2Wef1UcffaTNmzdrzJgxio2NVWpqav1cJWomINBasEGS1vAQGQAAaBpqNN3XjBkzJElDhw71OD5r1iyNGzdOkrR//375+Z3Ny8ePH9e9996rzMxMhYeHq3///vrqq6/Us2dPd5vf/e53ys/P13333afs7GxdddVVWrRoUYWFHNCIBo2QVrwvbVsj5fwkuSLsrggAAOC8HMYYY3cRdZWbmyuXy6WcnByGJdSnlx6Q9myVrr9bSv6V3dUAAIAmrDHyWp3msYWPG1T6ENmaRVJJib21AAAAXADBFlXrO1gKbmHNZ/vDJrurAQAAOC+CLarmDJEuvdbaZyUyAADg5Qi2OL+y4QibPpfyWeENAAB4L4Itzi+um9S+i3SmSFq/9MLtAQAAbEKwxfk5HGd7bVcvkJr+JBoAAMBHEWxxYZdeKwUGSRl7pP077K4GAACgUgRbXFiLUKnPYGufh8gAAICXItiiegaNtF43LJcKTp2/LQAAgA0ItqieLn2kiPZWqN24wu5qAAAAKiDYonocjrO9tqsX2lsLAABAJQi2qL4BwyU/P2nvNiljr93VAAAAeCDYovrC2ki9kqz9NfTaAgAA70KwRc2UzWm7bol0ptDeWgAAAMoh2KJmelwmuSKs5XU3f2V3NQAAAG4EW9SMn780cIS1z0NkAADAixBsUXMDR1izJHy/XjqaYXc1AAAAkgi2qI020VK3S639tYvtrQUAAKAUwRa1Uzan7ZpFUnGxvbUAAACIYIvauvgKqWWYlPOT9N3XdlcDAABAsEUtBQRJl/3M2mdOWwAA4AUItqi9gaXDEbauknKP2VsLAABo9gi2qL2YTlKnnlJJifT1J3ZXAwAAmjmCLeqm7CGy1QslY+ytBQAANGsEW9RNv6GSs4X00yHph012VwMAAJoxgi3qxhkiXXqNtc9KZAAAwEYEW9Rd2XCETZ9JJ0/YWwsAAGi2CLaou/hEKbazVFQofbPM7moAAEAzRbBF3TkcZ6f+WrWAh8gAAIAtCLaoH/2HSQGB0uEfpIM77a4GAAA0QwRb1I+WYVKfq639VQvsrQUAADRLBFvUn0HXWa/fLJMKTtlbCwAAaHYItqg/XfpIEbFSwUnp28/srgYAADQzBFvUHz8/aeAIa381wxEAAEDjItiifg0YbgXcPVulrH12VwMAAJoRgi3qlytC6jnQ2l+9yN5aAABAs0KwRf0bdL31+vUn0pkie2sBAADNBsEW9a/HAMnVVsrPkbassrsaAADQTNQo2KalpWnAgAEKDQ1VZGSkUlNTtWPHjvN+5h//+IeuvvpqhYeHKzw8XMnJyVq7dq1Hm3HjxsnhcHhsI0aMqPnVwDv4+0uXp1j7a3iIDAAANI4aBduVK1dq4sSJWr16tZYsWaKioiINHz5c+fn5VX5mxYoVGj16tJYvX65Vq1YpPj5ew4cP16FDhzzajRgxQhkZGe7tnXfeqd0VwTtcXvoXkx3rpYw99tYCAACaBYcxxtT2wz/++KMiIyO1cuVKDR48uFqfKS4uVnh4uF5++WWNGTNGktVjm52drXnz5tWqjtzcXLlcLuXk5CgsLKxW34EGMPMJafOXUkwnafLfpSCn3RUBAACbNEZeq9MY25ycHElSmzZtqv2ZkydPqqioqMJnVqxYocjISCUmJmrChAk6evRold9RUFCg3Nxcjw1e6JbJUmi4lLFX+uhVu6sBAAA+rtbBtqSkRJMnT9aVV16p3r17V/tzjzzyiGJjY5WcnOw+NmLECL311ltaunSpnnvuOa1cuVIjR45UcXFxpd+RlpYml8vl3uLj42t7GWhIoeHSrx6x9r/8P2nT5/bWAwAAfFqthyJMmDBBCxcu1BdffKG4uLhqfWbq1KmaNm2aVqxYoT59+lTZbvfu3erSpYs+/fRTDRs2rML5goICFRQUuN/n5uYqPj6eoQje6v/+IS17VwppJT38mhQeZXdFAACgkXntUIRJkyZp/vz5Wr58ebVD7QsvvKCpU6fqk08+OW+olaTOnTsrIiJCu3btqvS80+lUWFiYxwYvdt1dUoce0qk86X/TpCp64gEAAOqiRsHWGKNJkyZp7ty5WrZsmRISEqr1uWnTpumZZ57RokWLdNlll12w/cGDB3X06FHFxMTUpDx4K/8A6c4/SM4W0p4t0pK37a4IAAD4oBoF24kTJ+rtt9/WnDlzFBoaqszMTGVmZurUqVPuNmPGjNGUKVPc75977jk99thjmjlzpjp16uT+TF5eniQpLy9PDz/8sFavXq29e/dq6dKlGjVqlLp27aqUlJR6ukzYLiJW+q/J1v4n/5J2fWtrOQAAwPfUKNjOmDFDOTk5Gjp0qGJiYtzbu+++626zf/9+ZWRkeHymsLBQv/zlLz0+88ILL0iS/P39tWnTJt14443q3r27xo8fr/79++vzzz+X08n0UD7l0muthRtMifR2mrUyGQAAQD2p0zy23oJ5bJuQglPSi7+RjhyQel8h3f2U5HDYXRUAAGhgXvvwGFBrzhBrvK1/oLTlK+nLj+yuCAAA+AiCLRpfXDfphnut/f+8Kh36wd56AACATyDYwh6DfyH1HCSdKZLe+qM1RAEAAKAOCLawh8MhjX5YCmsrHdkvzXvF7ooAAEATR7CFfVq5pDumWCF39UJpw3K7KwIAAE0YwRb26tZPSh5t7b/3F+loxnmbAwAAVIVgC/uljJU69ZROn5T+909S8Rm7KwIAAE0QwRb28/e3pgALbint2y4tetPuigAAQBNEsIV3aBMt3fqgtb80Xfr+G3vrAQAATQ7BFt6j32Ap6XrJGOlfz0l52XZXBAAAmhCCLbxL6gQpqqOUe1SaM00qKbG7IgAA0EQQbOFdgoKlMf8jBQZJ29dKn8+1uyIAANBEEGzhfWI7S6Put/b/7x/SgZ321gMAAJoEgi280xU3SBdfZU399b/PWlOBAQAAnAfBFt7J4ZBu/a3Uup304yHpw5ftrggAAHg5gi28V8sw6Y4/SA4/6etPpPVL7a4IAAB4MYItvFuXi6Xhd1j77/9V+umwreUAAADvRbCF9xt+u9Slj1RwSnrrWelMkd0VAQAAL0Swhffz85du/73UIlQ68L20YKbdFQEAAC9EsEXTEB4p3faQtb/8fem7r+2tBwAAeB2CLZqOi6+Urhpl7f/rOSn3mL31AAAAr0KwRdNyw31STIKUl22FW5bcBQAApQi2aFqCnNLYR6VAp/T9emnF+3ZXBAAAvATBFk1PVEfpponW/sczpX3b7a0HAAB4BYItmqaBI6W+g6WSYum1KdLuzXZXBAAAbEawRdNUtuRup17SqTxpxu+kTZ/bXRUAALARwRZNV0gracI0a7aEM0XS7KelL/5jd1UAAMAmBFs0bUFOadzj0hU/l4yR/v03a9ytMXZXBgAAGhnBFk2fn7/0ywekkeOs95/Okd55Xio+Y2tZAACgcRFs4RscDmn4HdJtD0p+ftLXn0j/fEwqOGV3ZQAAoJEQbOFbBo6U7n5aCgq2lt39+4PSieN2VwUAABoBwRa+p9cg6TcvSC1d0oHvpZcekH48ZHdVAACggRFs4Zs69pD+e7rUJlr66bAVbvfvsLsqAADQgAi28F2RcdLkv0lx3aS8bGtYwva1dlcFAAAaCMEWvi00XJr4Z6l7f6nwtPTPR6W1i+2uCgAANACCLXxfcAvp3mel/slSSYk1FdiSOcx1CwCAjyHYonkICJRuf0S69lbr/YKZ1mIOJcX21gUAAOpNjYJtWlqaBgwYoNDQUEVGRio1NVU7dlz4gZz3339fPXr0UHBwsC6++GItWLDA47wxRo8//rhiYmIUEhKi5ORk7dy5s2ZXAlyIwyHdcK/0i4nW/pcfSW8+IxUW2F0ZAACoBzUKtitXrtTEiRO1evVqLVmyREVFRRo+fLjy8/Or/MxXX32l0aNHa/z48dqwYYNSU1OVmpqqLVu2uNtMmzZNL730kl599VWtWbNGLVu2VEpKik6fPl37KwOqMvgX0phHJf9AadMX0quPSPm5dlcFAADqyGFM7Qca/vjjj4qMjNTKlSs1ePDgStvceuutys/P1/z5893HBg0apH79+unVV1+VMUaxsbF68MEH9dBDD0mScnJyFBUVpdmzZ+u22267YB25ublyuVzKyclRWFhYbS8Hzc2ub6U3HpdO50tRHaRfp0nhUXZXBQCAT2qMvFanMbY5OTmSpDZt2lTZZtWqVUpOTvY4lpKSolWrVkmS9uzZo8zMTI82LpdLAwcOdLcBGkTXvtL/+4vkipCy9kvTH5AO77a7KgAAUEu1DrYlJSWaPHmyrrzySvXu3bvKdpmZmYqK8uwFi4qKUmZmpvt82bGq2pyroKBAubm5HhtQK7GdpQdekqI6Sjk/SX/7/6RdG+2uCgAA1EKtg+3EiRO1ZcsWpaen12c91ZKWliaXy+Xe4uPjG70G+JDwSKvnNqG3NSzh1SnSxpV2VwUAAGqoVsF20qRJmj9/vpYvX664uLjzto2OjlZWVpbHsaysLEVHR7vPlx2rqs25pkyZopycHPd24MCB2lwGcFbLMGnCNKnPVVJxkfTWs9Jnc+2uCgAA1ECNgq0xRpMmTdLcuXO1bNkyJSQkXPAzSUlJWrp0qcexJUuWKCkpSZKUkJCg6Ohojza5ublas2aNu825nE6nwsLCPDagzgKDpLGPSVfeaC3eMPfv0kevW4s6AAAArxdQk8YTJ07UnDlz9J///EehoaHuMbAul0shISGSpDFjxqh9+/ZKS0uTJD3wwAMaMmSI/vznP+v6669Xenq61q1bp9dff12S5HA4NHnyZD377LPq1q2bEhIS9Nhjjyk2Nlapqan1eKlANfj5Szf/P6l1hPTxTGn5e1LOj9JNk6SWLrurAwAA51Gj6b4cDkelx2fNmqVx48ZJkoYOHapOnTpp9uzZ7vPvv/++Hn30Ue3du1fdunXTtGnTdN1117nPG2P0xBNP6PXXX1d2drauuuoqvfLKK+revXu16mK6LzSItZ9I775g9dg6W0hDfykNvVkKbml3ZQAANDmNkdfqNI+ttyDYosHs+laa94p06Afrfcswadhoa7hCkNPe2gAAaEIIttVEsEWDKimRNn0uLZwtHSl9UNHVVhp+pzRwhORfoxE9AAA0SwTbaiLYolEUF0vrlkiL35KOH7GOtY2RRoyVLr3GGp8LAAAqRbCtJoItGtWZQmnVAmnJv6QTx61j0Z2k6+6Sel8hVTEWHQCA5oxgW00EW9ii4JT0+Txp2bvSqTzrWIdE6bq7pe6XEnABACiHYFtNBFvY6lSeNS3Yyg+lwtPWsa59rYCb0Mve2gAA8BIE22oi2MIrnDguffqO9OX/WauXSVLPQdYQhfZd7K0NAACbEWyriWALr3I8S/rkbWnt4rOrll0yVBoxToo8/xLUAAD4KoJtNRFs4ZWOHJQWvSltWG699/OTBqRIKXdI4VH21gYAQCMj2FYTwRZe7dAP1hy4W1dZ7/0DpStvkJJHS6HhtpYGAEBjIdhWE8EWTcLebdLHb1irmUlSULA0+CbpmlukFqH21gYAQAMj2FYTwRZNhjHS999IC2ZK+3dYx0JaWUv0Jl0ntYm2tz4AABoIwbaaCLZocoyRtnwlLZglZe61jjkcUuJl0hU/t2ZT8GclMwCA7yDYVhPBFk1WSbG0+Uvpq4+l79efPe5qKw0cKQ0ayYNmAACfQLCtJoItfMJPh6VVH1vThOVlW8ccDumiy6Wkn1uv9OICAJoogm01EWzhU84UWb24qz6Wdm44e7x1O2ngCGnQddY+AABNCMG2mgi28FlHDkqrP5bWfiLl51jHHH5Sz4FS0vXSRQMkP3pxAQDej2BbTQRb+LwzhdKmL6Sv5ks/bDp7PDzS6sEdOEJyRdhXHwAAF0CwrSaCLZqVrP3S6gXWWNyTJ6xjfn5SrySrFzfxMus9AABehGBbTQRbNEtFhdKmz61e3N2bzx5vE322FzesjX31AQBQDsG2mgi2aPYy91kPm339iXQqzzrm5y/1vsKaF7fbJfTiAgBsRbCtJoItUKqwQPp2pTUv7t6tZ4+3iZb6DbG2uG7WNGIAADQigm01EWyBSmTssYYprPtUOp1/9njbGKnvYGuL707IBQA0CoJtNRFsgfMoPC1tWyttXCFtX2u9L9Mm2gq4/YYQcgEADYpgW00EW6CaCk5J27+2hitsW1NFyB0sxScScgEA9YpgW00EW6AWynpyqwy5V5f25BJyAQB1R7CtJoItUEeFp61hChvPE3L7DpE6EHIBALVDsK0mgi1Qj8pC7refSVtXe4bc8KizwxU69CDkAgCqjWBbTQRboIEUnpa++9rqya0QciPPPnhGyAUAXADBtpoItkAjcIfcz6StqyqG3C59pbiuUvsuUvuuUkgr+2oFAHgdgm01EWyBRlZYUK4n95yQW6ZNtBVw47par+27SK4IenYBoJki2FYTwRawUWGBtHODdHCndGiXdHCXdDyr8rYtXWdDblngbdfeWv4XAODTCLbVRLAFvMzJE9KhH6ygW7Zl7ZdKSiq2DQqWYhLODmGI6ypFJ0hBzsavGwDQYBojrwU0yLcCaN5ahErd+llbmcICKXNvubD7g3R4tzWMYd92ayvj5ydFdvAMuzGdpZZhDGUAAFSJHlsA9ikpln48dLZ392Bp6M3Pqbx9cAupbYzUNrb0tXSLiLUeYPPn7+oA4K0YilBNBFvAhxgj5Rz1HMZwcJd0LPP8n3P4WeH23MBbtt8itHHqBwBUiqEIAJofh0NqHWFtvQadPV54WjqWJR3NsLafDp/dP5YhFRVa4fdYpvUw27lCWpX29EZXDL2tIyV/HmADgKaOYAugaQgKlqI7Wtu5SkqkE8fOBt2jGdJP5fZPHJNO5UkHv7e2c/n5W729LV2SM8Qa8uAMKd1anH0NPud9WZvgFtb7gEDGAAOAjQi2AJo+Pz9rjlxXhNT54ornC05ZPbkewfewdDTT6u09U3T2eJ3q8C8XiltIzuDS19Jjoa2l+ESp40VWkCYEA0C9qnGw/eyzz/T8889r/fr1ysjI0Ny5c5Wamlpl+3HjxunNN9+scLxnz57aunWrJOnJJ5/UU0895XE+MTFR3333XU3LA4CKnCHWlGIxCRXPlZRIucesgHsyTyo4aQXhgpPS6dLXsmOny50rOH32eNkCFSXF1lRnJ09cuKbQcKljD6nDRaWviVJwy/q9bgBoZmocbPPz89W3b1/dfffduummmy7Yfvr06Zo6dar7/ZkzZ9S3b1/dcsstHu169eqlTz/99GxhAXQmA2gEfn5nx/TWVklxaeA9NxCXheHSIHw8S9r3nXT4B+nEcWnLKmuTrN7byA5WyO1YGnajExj7CwA1UOP0OHLkSI0cObLa7V0ul1wul/v9vHnzdPz4cd11112ehQQEKDo6uqblAID9/Pyth9NCWlWvfWGBNdvDvu3S/u+ssHssU8raZ21rF1vtgoKluG6ePbut2zGEAQCq0Ojdom+88YaSk5PVsaPnAyA7d+5UbGysgoODlZSUpLS0NHXo0KHS7ygoKFBBQYH7fW5uboPWDAD1KsgpJfSytjInjlsBd//20tfvrN7e3ZutrUxY29KgW9qzG9/dGtcLAGjcYHv48GEtXLhQc+bM8Tg+cOBAzZ49W4mJicrIyNBTTz2lq6++Wlu2bFFoaMW5J9PS0iqMyQWAJi00XOqdZG2SNfb3xwNWyN273Qq8GXuk3KPS5i+tTbLm743uYPXodki05ustKZaKi63Xsu3c9yUlF25T4TPFkpE1fMPP/+zm71/FsfMdr+K9n78UEWONh2bBDQA1VKcFGhwOxwUfHisvLS1Nf/7zn3X48GEFBQVV2S47O1sdO3bUiy++qPHjx1c4X1mPbXx8PAs0APBthaelAzs9e3WPH7G7qoYREGgtqRyfWLp1l6LireALoEnyqQUajDGaOXOm7rzzzvOGWklq3bq1unfvrl27dlV63ul0yul0NkSZAOC9goKlLhdbW5mco6XjdLdLB3daU5dVt2fU45jfhT9T9iBbScnZXt+qenbP2/tbUsW5Emuhjax91rzD+0rHH5e//rhuVsjtUBp228ZatQOAGjHYrly5Urt27aq0B/ZceXl5+uGHH3TnnXc2QmUA0IS52koXX2ltvsIYa57hAzukA9+f3QpPVxxzHNzSCrjusJvIHMFAM1bjYJuXl+fRk7pnzx5t3LhRbdq0UYcOHTRlyhQdOnRIb731lsfn3njjDQ0cOFC9e/eu8J0PPfSQbrjhBnXs2FGHDx/WE088IX9/f40ePboWlwQAaNIcDqlde2u79FrrWEmxdOSgFXb3lwbeQ7uk0/nWEsrll1Fu1fps2I3vboVdV1tbLgVA46pxsF23bp2uueYa9/vf/va3kqSxY8dq9uzZysjI0P79+z0+k5OTo3//+9+aPn16pd958OBBjR49WkePHlW7du101VVXafXq1WrXrl1NywMA+CI//7NLKg8Ybh0rPiNl7rVCblnYPbxbysuWtq+1tjKutmdDblw363taRzKMAfAxdXp4zFs0xmBkAEATUFRohVv3MIYdUuZ+yZRUbBvolCLjpKgOUlRHa4GMqHirpzjg/M+CAKg5n3p4DACABhcYVLp6W4+zxwpOWcMWynp2D++WfjwoFRVIh36wtvL8/KS2MVbgjexQGnw7SJHx1V+EA4AtCLYAAN/mDJE6X2xtZYqLpaMZ0pH9UtY5W8FJ6cdD1qZVnt/lausZdssCb1hbHlgDvABDEQAAKGOMtQhG+aB75ID1mnu06s8Ft7SGMUR1LA26baxjIS2tV/d+q7PTpgHNDEMRAABoTA6H5Iqwtu6Xep47lecZdMu2oxnW7AznzrtblaDgcmG3RcXgG9LSMxQTjoFqI9gCAFAdIa2kTj2trbwzhdawhfI9vCdzpVP5VuA9nW/tF5622heetrbz9QBfSGCQ5B9ordAWEGg97BYQWHHzP9+xcp/xD6h4LMhphfCgYCkoxHp1lr5nuWN4Kf6bCQBAXQQESTEJ1nY+xWfOhtzygbfCsbxz3p88u18WjosKrc0u/oFnQ25VmzOk3H4l5wOdpeOSHZJDKv0P65ij3L7k2absM2UfcX9HuTHOZccCAq3fCQw6+8pYaJ9GsAUAoDH4B0gtXdZWW2XhuOCUtXzymSKrx/hMkXXu3GPnbsWVHCtrf+65woKzvcuFp6zXktJp04qLpJNF0skT9fNn05g8gq7T6pku/z4wSAoM9gzDQcEV2wQFn+3ldvd4n9MD7u4dD7D2CdUNjmALAEBTUR/huLaMsQJtwelygfe0FbILzz12umIoPrdtUZEkY32vSp9jNzp7rPyz7WVtKj2mcsfLtTHGCuhFBdbKdWWKCqxNNoRyd+ANOCcQB0j+Qdbruef9A6wFSvz9PV/LNo/zfhXPndu+su+KSZBCwxv/z6MBEGwBAMCFORylY3CDpJZNbAai4uKzgbZsKyyUik6XDusoO1Z2vvDsa+E5bTzOF0hnzpT2lp/Tc15cdLaH211HaVtvM+ZR6ZKhdldRLwi2AADAt/n7S/4tpOAWjfu7JcWlwbf8cJAz5wwLKQ3FFY6XbiXF1lZcfHbf/b6kdP9M1e3KjlV1vKRYahHauH8uDYhgCwAA0BD8/KUgf0lOuytpNvzsLgAAAACoDwRbAAAA+ASCLQAAAHwCwRYAAAA+gWALAAAAn0CwBQAAgE8g2AIAAMAnEGwBAADgEwi2AAAA8AkEWwAAAPgEgi0AAAB8AsEWAAAAPoFgCwAAAJ9AsAUAAIBPCLC7gPpgjJEk5ebm2lwJAAAAKlOW08pyW0PwiWB74sQJSVJ8fLzNlQAAAOB8Tpw4IZfL1SDf7TANGZsbSUlJiQ4fPqzQ0FA5HA7l5uYqPj5eBw4cUFhYmN3loQFxr5sH7nPzwb1uHrjPzUf5ex0aGqoTJ04oNjZWfn4NMxrWJ3ps/fz8FBcXV+F4WFgY/8A0E9zr5oH73Hxwr5sH7nPzUXavG6qntgwPjwEAAMAnEGwBAADgE3wy2DqdTj3xxBNyOp12l4IGxr1uHrjPzQf3unngPjcfjX2vfeLhMQAAAMAne2wBAADQ/BBsAQAA4BMItgAAAPAJBFsAAAD4BJ8Mtn//+9/VqVMnBQcHa+DAgVq7dq3dJeE8PvvsM91www2KjY2Vw+HQvHnzPM4bY/T4448rJiZGISEhSk5O1s6dOz3aHDt2TLfffrvCwsLUunVrjR8/Xnl5eR5tNm3apKuvvlrBwcGKj4/XtGnTGvrSUE5aWpoGDBig0NBQRUZGKjU1VTt27PBoc/r0aU2cOFFt27ZVq1atdPPNNysrK8ujzf79+3X99derRYsWioyM1MMPP6wzZ854tFmxYoUuvfRSOZ1Ode3aVbNnz27oy0OpGTNmqE+fPu7J2JOSkrRw4UL3ee6xb5o6daocDocmT57sPsa99g1PPvmkHA6Hx9ajRw/3ea+7z8bHpKenm6CgIDNz5kyzdetWc++995rWrVubrKwsu0tDFRYsWGD+53/+x3z44YdGkpk7d67H+alTpxqXy2XmzZtnvv32W3PjjTeahIQEc+rUKXebESNGmL59+5rVq1ebzz//3HTt2tWMHj3afT4nJ8dERUWZ22+/3WzZssW88847JiQkxLz22muNdZnNXkpKipk1a5bZsmWL2bhxo7nuuutMhw4dTF5enrvN/fffb+Lj483SpUvNunXrzKBBg8wVV1zhPn/mzBnTu3dvk5ycbDZs2GAWLFhgIiIizJQpU9xtdu/ebVq0aGF++9vfmm3btpm//e1vxt/f3yxatKhRr7e5+uijj8zHH39svv/+e7Njxw7zhz/8wQQGBpotW7YYY7jHvmjt2rWmU6dOpk+fPuaBBx5wH+de+4YnnnjC9OrVy2RkZLi3H3/80X3e2+6zzwXbyy+/3EycONH9vri42MTGxpq0tDQbq0J1nRtsS0pKTHR0tHn++efdx7Kzs43T6TTvvPOOMcaYbdu2GUnm66+/drdZuHChcTgc5tChQ8YYY1555RUTHh5uCgoK3G0eeeQRk5iY2MBXhKocOXLESDIrV640xlj3NTAw0Lz//vvuNtu3bzeSzKpVq4wx1l+C/Pz8TGZmprvNjBkzTFhYmPve/u53vzO9evXy+K1bb73VpKSkNPQloQrh4eHmn//8J/fYB504ccJ069bNLFmyxAwZMsQdbLnXvuOJJ54wffv2rfScN95nnxqKUFhYqPXr1ys5Odl9zM/PT8nJyVq1apWNlaG29uzZo8zMTI976nK5NHDgQPc9XbVqlVq3bq3LLrvM3SY5OVl+fn5as2aNu83gwYMVFBTkbpOSkqIdO3bo+PHjjXQ1KC8nJ0eS1KZNG0nS+vXrVVRU5HGve/TooQ4dOnjc64svvlhRUVHuNikpKcrNzdXWrVvdbcp/R1kb/h3Q+IqLi5Wenq78/HwlJSVxj33QxIkTdf3111e4H9xr37Jz507Fxsaqc+fOuv3227V//35J3nmffSrY/vTTTyouLvb4w5OkqKgoZWZm2lQV6qLsvp3vnmZmZioyMtLjfEBAgNq0aePRprLvKP8baDwlJSWaPHmyrrzySvXu3VuSdR+CgoLUunVrj7bn3usL3ceq2uTm5urUqVMNcTk4x+bNm9WqVSs5nU7df//9mjt3rnr27Mk99jHp6en65ptvlJaWVuEc99p3DBw4ULNnz9aiRYs0Y8YM7dmzR1dffbVOnDjhlfc5oEatAaAeTJw4UVu2bNEXX3xhdyloAImJidq4caNycnL0wQcfaOzYsVq5cqXdZaEeHThwQA888ICWLFmi4OBgu8tBAxo5cqR7v0+fPho4cKA6duyo9957TyEhITZWVjmf6rGNiIiQv79/hafxsrKyFB0dbVNVqIuy+3a+exodHa0jR454nD9z5oyOHTvm0aay7yj/G2gckyZN0vz587V8+XLFxcW5j0dHR6uwsFDZ2dke7c+91xe6j1W1CQsL88p/CfuioKAgde3aVf3791daWpr69u2r6dOnc499yPr163XkyBFdeumlCggIUEBAgFauXKmXXnpJAQEBioqK4l77qNatW6t79+7atWuXV/4z7VPBNigoSP3799fSpUvdx0pKSrR06VIlJSXZWBlqKyEhQdHR0R73NDc3V2vWrHHf06SkJGVnZ2v9+vXuNsuWLVNJSYkGDhzobvPZZ5+pqKjI3WbJkiVKTExUeHh4I11N82aM0aRJkzR37lwtW7ZMCQkJHuf79++vwMBAj3u9Y8cO7d+/3+Neb9682eMvMkuWLFFYWJh69uzpblP+O8ra8O8A+5SUlKigoIB77EOGDRumzZs3a+PGje7tsssu0+233+7e5177pry8PP3www+KiYnxzn+ma/y4mZdLT083TqfTzJ4922zbts3cd999pnXr1h5P48G7nDhxwmzYsMFs2LDBSDIvvvii2bBhg9m3b58xxpruq3Xr1uY///mP2bRpkxk1alSl031dcsklZs2aNeaLL74w3bp185juKzs720RFRZk777zTbNmyxaSnp5sWLVow3VcjmjBhgnG5XGbFihUe08acPHnS3eb+++83HTp0MMuWLTPr1q0zSUlJJikpyX2+bNqY4cOHm40bN5pFixaZdu3aVTptzMMPP2y2b99u/v73vzM9UCP6/e9/b1auXGn27NljNm3aZH7/+98bh8NhPvnkE2MM99iXlZ8VwRjuta948MEHzYoVK8yePXvMl19+aZKTk01ERIQ5cuSIMcb77rPPBVtjjPnb3/5mOnToYIKCgszll19uVq9ebXdJOI/ly5cbSRW2sWPHGmOsKb8ee+wxExUVZZxOpxk2bJjZsWOHx3ccPXrUjB492rRq1cqEhYWZu+66y5w4ccKjzbfffmuuuuoq43Q6Tfv27c3UqVMb6xJhTKX3WJKZNWuWu82pU6fMb37zGxMeHm5atGhhfvGLX5iMjAyP79m7d68ZOXKkCQkJMREREebBBx80RUVFHm2WL19u+vXrZ4KCgkznzp09fgMN6+677zYdO3Y0QUFBpl27dmbYsGHuUGsM99iXnRtsude+4dZbbzUxMTEmKCjItG/f3tx6661m165d7vPedp8dxhhT835eAAAAwLv41BhbAAAANF8EWwAAAPgEgi0AAAB8AsEWAAAAPoFgCwAAAJ9AsAUAAIBPINgCAADAJxBsAQAA4BMItgAAAPAJBFsAAAD4BIItAAAAfALBFgAAAD7h/wdtXsPv2SVEnwAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 800x500 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"tb_dir = os.path.join(WORK_DIR, \"tensorboard_output\")\n",
|
||
"fname = os.listdir(tb_dir)[0]\n",
|
||
"tb_path = os.path.join(tb_dir, fname)\n",
|
||
"#\n",
|
||
"data = read_tensorboard_file(tb_path)\n",
|
||
"print(data.keys())\n",
|
||
"_ = plot_image(data, \"loss\", 0.9)\n",
|
||
"_ = plot_image(data, \"lr\", 0)\n",
|
||
"_ = plot_image(data, \"evaluation/acc\", 0)\n",
|
||
"_ = plot_image(data, \"evaluation/loss\", 0)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 推理\n",
|
||
"推理部分见chatglm2_infer.ipynb"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "hackathon",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.11"
|
||
},
|
||
"orig_nbformat": 4
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|