Files
modelscope/tests/tuners/test_lora.py
yuze.zyz a58be34384 Add Lora/Adapter/Prompt and support for chatglm6B and chatglm2-6B
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/12770413

* add prompt and lora

* add adapter

* add prefix

* add tests

* adapter smoke test passed

* prompt test passed

* support model id in petl

* migrate chatglm6b

* add train script for chatglm6b

* move gen_kwargs to finetune.py

* add chatglm2

* add model definination
2023-06-27 14:38:18 +08:00

119 lines
3.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import numpy as np
import torch
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models.base import Model
from modelscope.msdatasets import MsDataset
from modelscope.pipelines import pipeline
from modelscope.swift import Swift
from modelscope.swift.lora import (Linear, LoRA, LoRAConfig,
mark_only_lora_as_trainable)
from modelscope.trainers import build_trainer
from modelscope.utils.constant import ModelFile, Tasks
from modelscope.utils.test_utils import test_level
class TestLora(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip in this level')
def test_lora_base(self):
class TestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.lora = Linear(16, 16, r=4)
model = TestModel()
mark_only_lora_as_trainable(model)
model.train()
loss = model.lora(torch.ones(16, 16))
loss = loss.sum()
loss.backward()
model = TestModel()
mark_only_lora_as_trainable(model)
model.eval()
loss = model.lora(torch.ones(16, 16))
loss = loss.sum()
try:
loss.backward()
except Exception:
pass
else:
raise Exception('No tensor needs grad, should throw en error here')
@unittest.skipUnless(test_level() >= 0, 'skip in this level')
def test_lora_smoke_test(self):
dataset = MsDataset.load(
'clue', subset_name='afqmc',
split='train').to_hf_dataset().select(range(2))
model_dir = snapshot_download(
'damo/nlp_structbert_sentence-similarity_chinese-tiny')
model = Model.from_pretrained(model_dir, adv_grad_factor=None)
cfg_file = os.path.join(model_dir, 'configuration.json')
lora_config = LoRAConfig(replace_modules=['query', 'key', 'value'])
model = Swift.prepare_model(model, lora_config)
kwargs = dict(
model=model,
cfg_file=cfg_file,
train_dataset=dataset,
eval_dataset=dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(default_args=kwargs)
trainer.train()
output_dir = os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)
def pipeline_sentence_similarity(model_dir):
model = Model.from_pretrained(model_dir)
lora_config.pretrained_weights = output_dir
Swift.prepare_model(model, lora_config)
model.load_state_dict(
torch.load(os.path.join(output_dir, 'pytorch_model.bin')))
model.eval()
pipeline_ins = pipeline(
task=Tasks.sentence_similarity, model=model)
return pipeline_ins(input=('test', 'this is a test'))
output1 = pipeline_sentence_similarity(
'damo/nlp_structbert_sentence-similarity_chinese-tiny')
LoRA.unpatch_lora(model, lora_config)
model.save_pretrained(
output_dir, save_checkpoint_names='pytorch_model.bin')
def pipeline_sentence_similarity_origin():
model = Model.from_pretrained(output_dir)
model.eval()
pipeline_ins = pipeline(
task=Tasks.sentence_similarity, model=model)
return pipeline_ins(input=('test', 'this is a test'))
output2 = pipeline_sentence_similarity_origin()
print(output1, output2)
self.assertTrue(all(np.isclose(output1['scores'], output2['scores'])))
if __name__ == '__main__':
unittest.main()