Files
modelscope/modelscope/swift/control_sd_lora.py
yuze.zyz a58be34384 Add Lora/Adapter/Prompt and support for chatglm6B and chatglm2-6B
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/12770413

* add prompt and lora

* add adapter

* add prefix

* add tests

* adapter smoke test passed

* prompt test passed

* support model id in petl

* migrate chatglm6b

* add train script for chatglm6b

* move gen_kwargs to finetune.py

* add chatglm2

* add model definination
2023-06-27 14:38:18 +08:00

917 lines
38 KiB
Python

# Copyright 2023-2024 The Alibaba Fundamental Vision Team Authors. All rights reserved.
# The implementation is adopted from HighCWu,
# made pubicly available under the Apache License 2.0 License at https://github.com/HighCWu/ControlLoRA
import os
from dataclasses import dataclass
from typing import List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.cross_attention import CrossAttention, LoRALinearLayer
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.resnet import (Downsample2D, Upsample2D, downsample_2d,
partial, upsample_2d)
from diffusers.models.unet_2d_blocks import \
get_down_block as get_down_block_default
from diffusers.utils.outputs import BaseOutput
from .sd_lora import LoRACrossAttnProcessor
@dataclass
class ControlLoRAOutput(BaseOutput):
control_states: Tuple[torch.FloatTensor]
class ControlLoRATuner(ModelMixin, ConfigMixin):
""" The implementation of control lora module.
This module conduct encoding operation for control-condition and use lora to perform efficient tuning.
"""
@staticmethod
def tune(
model: nn.Module,
tuner_config=None,
pretrained_tuner=None,
):
tuner = ControlLoRATuner.from_config(tuner_config)
if pretrained_tuner is not None and os.path.exists(pretrained_tuner):
tuner.load_state_dict(
torch.load(pretrained_tuner, map_location='cpu'), strict=True)
tune_layers_list = list(
[list(layer_list) for layer_list in tuner.lora_layers])
assert hasattr(model, 'unet')
unet = model.unet
tuner.to(unet.device)
tune_attn_procs = tuner.set_tune_layers(unet, tune_layers_list)
unet.set_attn_processor(tune_attn_procs)
return tuner
def set_tune_layers(self, unet, tune_layers_list):
n_ch = len(unet.config.block_out_channels)
control_ids = [i for i in range(n_ch)]
tune_attn_procs = {}
for name in unet.attn_processors.keys():
if name.startswith('mid_block'):
control_id = control_ids[-1]
elif name.startswith('up_blocks'):
block_id = int(name[len('up_blocks.')])
control_id = list(reversed(control_ids))[block_id]
elif name.startswith('down_blocks'):
block_id = int(name[len('down_blocks.')])
control_id = control_ids[block_id]
tune_layers = tune_layers_list[control_id]
if len(tune_layers) != 0:
tune_layer = tune_layers.pop(0)
tune_attn_procs[name] = tune_layer
return tune_attn_procs
@register_to_config
def __init__(self,
in_channels: int = 3,
down_block_types: Tuple[str] = (
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
),
block_out_channels: Tuple[int] = (32, 64, 128, 256),
layers_per_block: int = 1,
act_fn: str = 'silu',
norm_num_groups: int = 32,
lora_pre_down_block_types: Tuple[str] = (
None,
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
),
lora_pre_down_layers_per_block: int = 1,
lora_pre_conv_skipped: bool = False,
lora_pre_conv_types: Tuple[str] = (
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
'SimpleDownEncoderBlock2D',
),
lora_pre_conv_layers_per_block: int = 1,
lora_pre_conv_layers_kernel_size: int = 1,
lora_block_in_channels: Tuple[int] = (256, 256, 256, 256),
lora_block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
lora_cross_attention_dims: Tuple[List[int]] = ([
None, 768, None, 768, None, 768, None, 768, None, 768
], [None, 768, None, 768, None, 768, None, 768, None, 768], [
None, 768, None, 768, None, 768, None, 768, None, 768
], [None, 768]),
lora_rank: int = 4,
lora_control_rank: int = None,
lora_post_add: bool = False,
lora_concat_hidden: bool = False,
lora_control_channels: Tuple[int] = (None, None, None, None),
lora_control_self_add: bool = True,
lora_key_states_skipped: bool = False,
lora_value_states_skipped: bool = False,
lora_output_states_skipped: bool = False,
lora_control_version: int = 1):
""" Initialize a control lora module instance.
Args:
in_channels (`int`): The number of channels for input conditional data.
down_block_types (Tuple[str], *optional*):
The down block types for conditional data's downsample operation.
block_out_channels (Tuple[int], *optional*, defaults to (32, 64, 128, 256)):
The number of channels for every down-block.
layers_per_block (`int`, *optional*, defaults to 1):
The number of layers of every block.
act_fn (`str`, *optional*, defaults to silu):
The activation function.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for norm operation.
lora_pre_down_block_types (Tuple[str], *optional*):
The block'types for pre down-block.
lora_pre_down_layers_per_block (`int`, *optional*, defaults to 1)
The number of layers of every pre down-block block.
lora_pre_conv_skipped ('bool', *optional*, defaults to False )
Set to True to skip conv in pre downsample.
lora_pre_conv_types (Tuple[str], *optional*):
The block'types for pre conv.
lora_pre_conv_layers_per_block (`int`, *optional*, defaults to 1)
The number of layers of every pre conv block.
lora_pre_conv_layers_kernel_size (`int`, *optional*, defaults to 1)
The conv kernel size of pre conv block.
lora_block_in_channels (Tuple[int], *optional*, defaults to (256, 256, 256, 256)):
The number of input channels for lora block.
lora_block_out_channels (Tuple[int], *optional*, defaults to (256, 256, 256, 256)):
The number of output channels for lora block.
lora_rank (int, *optional*, defaults to 4):
The rank of lora block.
lora_control_rank (int, *optional*, defaults to 4):
The rank of lora block.
lora_post_add (`bool`, *optional*, defaults to False):
Set to `True`, conduct weighted adding operation after lora.
lora_concat_hidden (`bool`, *optional*, defaults to False):
Set to `True`, conduct concat operation for hidden embedding.
lora_control_channels (Tuple[int], *optional*, defaults to (None, None, None, None)):
The number of control channels.
lora_control_self_add (`bool`, *optional*, defaults to True):
Set to `True` to perform self attn add.
lora_key_states_skipped (`bool`, *optional*, defaults to False):
Set to `True` for skip to perform lora on key value.
value_states_skipped (`bool`, *optional*, defaults to False):
Set to `True` for skip to perform lora on value.
output_states_skipped (`bool`, *optional*, defaults to False):
Set to `True` for skip to perform lora on output value.
lora_control_version (int, *optional*, defaults to 1):
Use lora attn version: ControlLoRACrossAttnProcessor vs ControlLoRACrossAttnProcessorV2.
"""
super().__init__()
lora_control_cls = ControlLoRACrossAttnProcessor
if lora_control_version == 2:
lora_control_cls = ControlLoRACrossAttnProcessorV2
assert lora_block_in_channels[0] == block_out_channels[-1]
if lora_pre_conv_skipped:
lora_control_channels = lora_block_in_channels
lora_control_self_add = False
self.layers_per_block = layers_per_block
self.lora_pre_down_layers_per_block = lora_pre_down_layers_per_block
self.lora_pre_conv_layers_per_block = lora_pre_conv_layers_per_block
self.conv_in = torch.nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
stride=1,
padding=1)
self.down_blocks = nn.ModuleList([])
self.pre_lora_layers = nn.ModuleList([])
self.lora_layers = nn.ModuleList([])
# pre_down
pre_down_blocks = []
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
pre_down_block = get_down_block(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
)
pre_down_blocks.append(pre_down_block)
self.down_blocks.append(nn.Sequential(*pre_down_blocks))
self.pre_lora_layers.append(
get_down_block(
lora_pre_conv_types[0],
num_layers=self.lora_pre_conv_layers_per_block,
in_channels=lora_block_in_channels[0],
out_channels=(
lora_block_out_channels[0] if lora_control_channels[0] is
None else lora_control_channels[0]),
add_downsample=False,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
resnet_kernel_size=lora_pre_conv_layers_kernel_size,
) if not lora_pre_conv_skipped else nn.Identity())
self.lora_layers.append(
nn.ModuleList([
lora_control_cls(
lora_block_out_channels[0],
cross_attention_dim=cross_attention_dim,
rank=lora_rank,
control_rank=lora_control_rank,
post_add=lora_post_add,
concat_hidden=lora_concat_hidden,
control_channels=lora_control_channels[0],
control_self_add=lora_control_self_add,
key_states_skipped=lora_key_states_skipped,
value_states_skipped=lora_value_states_skipped,
output_states_skipped=lora_output_states_skipped)
for cross_attention_dim in lora_cross_attention_dims[0]
]))
# down
output_channel = lora_block_in_channels[0]
for i, down_block_type in enumerate(lora_pre_down_block_types):
if i == 0:
continue
input_channel = output_channel
output_channel = lora_block_in_channels[i]
down_block = get_down_block(
down_block_type,
num_layers=self.lora_pre_down_layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=True,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
)
self.down_blocks.append(down_block)
self.pre_lora_layers.append(
get_down_block(
lora_pre_conv_types[i],
num_layers=self.lora_pre_conv_layers_per_block,
in_channels=output_channel,
out_channels=(
lora_block_out_channels[i] if lora_control_channels[i]
is None else lora_control_channels[i]),
add_downsample=False,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attn_num_head_channels=None,
temb_channels=None,
resnet_kernel_size=lora_pre_conv_layers_kernel_size,
) if not lora_pre_conv_skipped else nn.Identity())
self.lora_layers.append(
nn.ModuleList([
lora_control_cls(
lora_block_out_channels[i],
cross_attention_dim=cross_attention_dim,
rank=lora_rank,
control_rank=lora_control_rank,
post_add=lora_post_add,
concat_hidden=lora_concat_hidden,
control_channels=lora_control_channels[i],
control_self_add=lora_control_self_add,
key_states_skipped=lora_key_states_skipped,
value_states_skipped=lora_value_states_skipped,
output_states_skipped=lora_output_states_skipped)
for cross_attention_dim in lora_cross_attention_dims[i]
]))
def forward(self,
x: torch.FloatTensor,
return_dict: bool = True) -> Union[ControlLoRAOutput, Tuple]:
lora_layer: ControlLoRACrossAttnProcessor
orig_dtype = x.dtype
dtype = self.conv_in.weight.dtype
h = x.to(dtype)
h = self.conv_in(h)
control_states_list = []
# down
for down_block, pre_lora_layer, lora_layer_list in zip(
self.down_blocks, self.pre_lora_layers, self.lora_layers):
h = down_block(h)
control_states = pre_lora_layer(h)
if isinstance(control_states, tuple):
control_states = control_states[0]
control_states = control_states.to(orig_dtype)
for lora_layer in lora_layer_list:
lora_layer.inject_control_states(control_states)
control_states_list.append(control_states)
if not return_dict:
return tuple(control_states_list)
return ControlLoRAOutput(control_states=tuple(control_states_list))
def get_down_block(
down_block_type,
num_layers,
in_channels,
out_channels,
temb_channels,
add_downsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=None,
cross_attention_dim=None,
downsample_padding=None,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
resnet_time_scale_shift='default',
resnet_kernel_size=3,
):
down_block_type = down_block_type[7:] if down_block_type.startswith(
'UNetRes') else down_block_type
if down_block_type == 'SimpleDownEncoderBlock2D':
return SimpleDownEncoderBlock2D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
add_downsample=add_downsample,
convnet_eps=resnet_eps,
convnet_act_fn=resnet_act_fn,
convnet_groups=resnet_groups,
downsample_padding=downsample_padding,
convnet_time_scale_shift=resnet_time_scale_shift,
convnet_kernel_size=resnet_kernel_size)
else:
return get_down_block_default(
down_block_type,
num_layers,
in_channels,
out_channels,
temb_channels,
add_downsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=resnet_groups,
cross_attention_dim=cross_attention_dim,
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
# resnet_kernel_size=resnet_kernel_size
)
class ControlLoRACrossAttnProcessor(LoRACrossAttnProcessor):
def __init__(self,
hidden_size,
cross_attention_dim=None,
rank=4,
control_rank=None,
post_add=False,
concat_hidden=False,
control_channels=None,
control_self_add=True,
key_states_skipped=False,
value_states_skipped=False,
output_states_skipped=False,
**kwargs):
super().__init__(
hidden_size,
cross_attention_dim,
rank,
post_add=post_add,
key_states_skipped=key_states_skipped,
value_states_skipped=value_states_skipped,
output_states_skipped=output_states_skipped)
control_rank = rank if control_rank is None else control_rank
control_channels = hidden_size if control_channels is None else control_channels
self.concat_hidden = concat_hidden
self.control_self_add = control_self_add if control_channels is None else False
self.control_states: torch.Tensor = None
self.to_control = LoRALinearLayer(
control_channels + (hidden_size if concat_hidden else 0),
hidden_size, control_rank)
self.pre_loras: List[LoRACrossAttnProcessor] = []
self.post_loras: List[LoRACrossAttnProcessor] = []
def inject_pre_lora(self, lora_layer):
self.pre_loras.append(lora_layer)
def inject_post_lora(self, lora_layer):
self.post_loras.append(lora_layer)
def inject_control_states(self, control_states):
self.control_states = control_states
def process_control_states(self, hidden_states, scale=1.0):
control_states = self.control_states.to(hidden_states.dtype)
if hidden_states.ndim == 3 and control_states.ndim == 4:
batch, _, height, width = control_states.shape
control_states = control_states.permute(0, 2, 3, 1).reshape(
batch, height * width, -1)
self.control_states = control_states
_control_states = control_states
if self.concat_hidden:
b1, b2 = control_states.shape[0], hidden_states.shape[0]
if b1 != b2:
control_states = control_states[:, None].repeat(
1, b2 // b1, *([1] * (len(control_states.shape) - 1)))
control_states = control_states.view(-1,
*control_states.shape[2:])
_control_states = torch.cat([hidden_states, control_states], -1)
_control_states = scale * self.to_control(_control_states)
if self.control_self_add:
control_states = control_states + _control_states
else:
control_states = _control_states
return control_states
def __call__(self,
attn: CrossAttention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
scale=1.0):
pre_lora: LoRACrossAttnProcessor
post_lora: LoRACrossAttnProcessor
assert self.control_states is not None
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(
attention_mask=attention_mask,
target_length=sequence_length,
batch_size=batch_size)
query = attn.to_q(hidden_states)
for pre_lora in self.pre_loras:
lora_in = query if pre_lora.post_add else hidden_states
if isinstance(pre_lora, ControlLoRACrossAttnProcessor):
lora_in = lora_in + pre_lora.process_control_states(
hidden_states, scale)
query = query + scale * pre_lora.to_q_lora(lora_in)
query = query + scale * self.to_q_lora(
(query if self.post_add else hidden_states)
+ self.process_control_states(hidden_states, scale))
for post_lora in self.post_loras:
lora_in = query if post_lora.post_add else hidden_states
if isinstance(post_lora, ControlLoRACrossAttnProcessor):
lora_in = lora_in + post_lora.process_control_states(
hidden_states, scale)
query = query + scale * post_lora.to_q_lora(lora_in)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.key_states_skipped:
key = key + scale * pre_lora.to_k_lora(
key if pre_lora.post_add else encoder_hidden_states)
if not self.key_states_skipped:
key = key + scale * self.to_k_lora(
key if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.key_states_skipped:
key = key + scale * post_lora.to_k_lora(
key if post_lora.post_add else encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.value_states_skipped:
value = value + pre_lora.to_v_lora(
value if pre_lora.post_add else encoder_hidden_states)
if not self.value_states_skipped:
value = value + scale * self.to_v_lora(
value if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.value_states_skipped:
value = value + post_lora.to_v_lora(
value if post_lora.post_add else encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
out = attn.to_out[0](hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.output_states_skipped:
out = out + scale * pre_lora.to_out_lora(
out if pre_lora.post_add else hidden_states)
out = out + scale * self.to_out_lora(
out if self.post_add else hidden_states)
for post_lora in self.post_loras:
if not post_lora.output_states_skipped:
out = out + scale * post_lora.to_out_lora(
out if post_lora.post_add else hidden_states)
hidden_states = out
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class ControlLoRACrossAttnProcessorV2(LoRACrossAttnProcessor):
def __init__(self,
hidden_size,
cross_attention_dim=None,
rank=4,
control_rank=None,
control_channels=None,
**kwargs):
super().__init__(
hidden_size,
cross_attention_dim,
rank,
post_add=False,
key_states_skipped=True,
value_states_skipped=True,
output_states_skipped=False)
control_rank = rank if control_rank is None else control_rank
control_channels = hidden_size if control_channels is None else control_channels
self.concat_hidden = True
self.control_self_add = False
self.control_states: torch.Tensor = None
self.to_control = LoRALinearLayer(hidden_size + control_channels,
hidden_size, control_rank)
self.to_control_out = LoRALinearLayer(hidden_size + control_channels,
hidden_size, control_rank)
self.pre_loras: List[LoRACrossAttnProcessor] = []
self.post_loras: List[LoRACrossAttnProcessor] = []
def inject_pre_lora(self, lora_layer):
self.pre_loras.append(lora_layer)
def inject_post_lora(self, lora_layer):
self.post_loras.append(lora_layer)
def inject_control_states(self, control_states):
self.control_states = control_states
def process_control_states(self, hidden_states, scale=1.0, is_out=False):
control_states = self.control_states.to(hidden_states.dtype)
if hidden_states.ndim == 3 and control_states.ndim == 4:
batch, _, height, width = control_states.shape
control_states = control_states.permute(0, 2, 3, 1).reshape(
batch, height * width, -1)
self.control_states = control_states
_control_states = control_states
if self.concat_hidden:
b1, b2 = control_states.shape[0], hidden_states.shape[0]
if b1 != b2:
control_states = control_states[:, None].repeat(
1, b2 // b1, *([1] * (len(control_states.shape) - 1)))
control_states = control_states.view(-1,
*control_states.shape[2:])
_control_states = torch.cat([hidden_states, control_states], -1)
_control_states = scale * (self.to_control_out
if is_out else self.to_control)(
_control_states)
if self.control_self_add:
control_states = control_states + _control_states
else:
control_states = _control_states
return control_states
def __call__(self,
attn: CrossAttention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
scale=1.0):
pre_lora: LoRACrossAttnProcessor
post_lora: LoRACrossAttnProcessor
assert self.control_states is not None
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(
attention_mask=attention_mask,
target_length=sequence_length,
batch_size=batch_size)
for pre_lora in self.pre_loras:
if isinstance(pre_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + pre_lora.process_control_states(
hidden_states, scale)
hidden_states = hidden_states + self.process_control_states(
hidden_states, scale)
for post_lora in self.post_loras:
if isinstance(post_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + post_lora.process_control_states(
hidden_states, scale)
query = attn.to_q(hidden_states)
for pre_lora in self.pre_loras:
lora_in = query if pre_lora.post_add else hidden_states
query = query + scale * pre_lora.to_q_lora(lora_in)
query = query + scale * self.to_q_lora(
query if self.post_add else hidden_states)
for post_lora in self.post_loras:
lora_in = query if post_lora.post_add else hidden_states
query = query + scale * post_lora.to_q_lora(lora_in)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.key_states_skipped:
key = key + scale * pre_lora.to_k_lora(
key if pre_lora.post_add else encoder_hidden_states)
if not self.key_states_skipped:
key = key + scale * self.to_k_lora(
key if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.key_states_skipped:
key = key + scale * post_lora.to_k_lora(
key if post_lora.post_add else encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.value_states_skipped:
value = value + pre_lora.to_v_lora(
value if pre_lora.post_add else encoder_hidden_states)
if not self.value_states_skipped:
value = value + scale * self.to_v_lora(
value if self.post_add else encoder_hidden_states)
for post_lora in self.post_loras:
if not post_lora.value_states_skipped:
value = value + post_lora.to_v_lora(
value if post_lora.post_add else encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
for pre_lora in self.pre_loras:
if isinstance(pre_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + pre_lora.process_control_states(
hidden_states, scale, is_out=True)
hidden_states = hidden_states + self.process_control_states(
hidden_states, scale, is_out=True)
for post_lora in self.post_loras:
if isinstance(post_lora, ControlLoRACrossAttnProcessorV2):
hidden_states = hidden_states + post_lora.process_control_states(
hidden_states, scale, is_out=True)
out = attn.to_out[0](hidden_states)
for pre_lora in self.pre_loras:
if not pre_lora.output_states_skipped:
out = out + scale * pre_lora.to_out_lora(
out if pre_lora.post_add else hidden_states)
out = out + scale * self.to_out_lora(
out if self.post_add else hidden_states)
for post_lora in self.post_loras:
if not post_lora.output_states_skipped:
out = out + scale * post_lora.to_out_lora(
out if post_lora.post_add else hidden_states)
hidden_states = out
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class ConvBlock2D(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_kernel_size=3,
dropout=0.0,
temb_channels=512,
groups=32,
groups_out=None,
pre_norm=True,
eps=1e-6,
non_linearity='swish',
time_embedding_norm='default',
kernel=None,
output_scale_factor=1.0,
up=False,
down=False,
):
super().__init__()
self.pre_norm = pre_norm
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.time_embedding_norm = time_embedding_norm
self.up = up
self.down = down
self.output_scale_factor = output_scale_factor
if groups_out is None:
groups_out = groups
self.norm1 = torch.nn.GroupNorm(
num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size=conv_kernel_size,
stride=1,
padding=conv_kernel_size // 2)
if temb_channels is not None:
if self.time_embedding_norm == 'default':
time_emb_proj_out_channels = out_channels
elif self.time_embedding_norm == 'scale_shift':
time_emb_proj_out_channels = out_channels * 2
else:
raise ValueError(
f'unknown time_embedding_norm : {self.time_embedding_norm} '
)
self.time_emb_proj = torch.nn.Linear(temb_channels,
time_emb_proj_out_channels)
else:
self.time_emb_proj = None
self.norm2 = torch.nn.GroupNorm(
num_groups=groups_out,
num_channels=out_channels,
eps=eps,
affine=True)
self.dropout = torch.nn.Dropout(dropout)
if non_linearity == 'swish':
self.nonlinearity = lambda x: F.silu(x)
elif non_linearity == 'mish':
self.nonlinearity = nn.Mish()
elif non_linearity == 'silu':
self.nonlinearity = nn.SiLU()
self.upsample = self.downsample = None
if self.up:
if kernel == 'fir':
fir_kernel = (1, 3, 3, 1)
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
elif kernel == 'sde_vp':
self.upsample = partial(
F.interpolate, scale_factor=2.0, mode='nearest')
else:
self.upsample = Upsample2D(in_channels, use_conv=False)
elif self.down:
if kernel == 'fir':
fir_kernel = (1, 3, 3, 1)
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
elif kernel == 'sde_vp':
self.downsample = partial(
F.avg_pool2d, kernel_size=2, stride=2)
else:
self.downsample = Downsample2D(
in_channels, use_conv=False, padding=1, name='op')
def forward(self, input_tensor, temb):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes.
# see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
_ = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
_ = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None:
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None,
None]
if temb is not None and self.time_embedding_norm == 'default':
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
if temb is not None and self.time_embedding_norm == 'scale_shift':
scale, shift = torch.chunk(temb, 2, dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.nonlinearity(hidden_states)
output_tensor = self.dropout(hidden_states)
return output_tensor
class SimpleDownEncoderBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
convnet_eps: float = 1e-6,
convnet_time_scale_shift: str = 'default',
convnet_act_fn: str = 'swish',
convnet_groups: int = 32,
convnet_pre_norm: bool = True,
convnet_kernel_size: int = 3,
output_scale_factor=1.0,
add_downsample=True,
downsample_padding=1,
):
super().__init__()
convnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
convnets.append(
ConvBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=None,
eps=convnet_eps,
groups=convnet_groups,
dropout=dropout,
time_embedding_norm=convnet_time_scale_shift,
non_linearity=convnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=convnet_pre_norm,
conv_kernel_size=convnet_kernel_size,
))
in_channels = in_channels if num_layers == 0 else out_channels
self.convnets = nn.ModuleList(convnets)
if add_downsample:
self.downsamplers = nn.ModuleList([
Downsample2D(
in_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name='op')
])
else:
self.downsamplers = None
def forward(self, hidden_states):
for convnet in self.convnets:
hidden_states = convnet(hidden_states, temb=None)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
return hidden_states