Files
modelscope/tests/pipelines/test_text_to_image_synthesis.py
wenmeng.zwm 231f400133 [to #43112534] finetune support and first case
co-contributed with 夕陌&雨泓

 * add torch epoch based trainer and dis utils
 * add hooks including optimizer, lrscheduler, logging, checkpoint, evaluation, time profiling
 * add torch mdoel base and test
 * add optimizer and lrscheduler module
 * add sbert for text classification example
 * add task_dataset for dataset-level processor

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9338412
2022-07-14 16:25:55 +08:00

52 lines
1.8 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
import numpy as np
from modelscope.models import Model
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class TextToImageSynthesisTest(unittest.TestCase):
model_id = 'damo/cv_imagen_text-to-image-synthesis_tiny'
test_text = {
'text': '宇航员',
'generator_ddim_timesteps': 2,
'upsampler_256_ddim_timesteps': 2,
'upsampler_1024_ddim_timesteps': 2,
'debug': True
}
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
pipe_line_text_to_image_synthesis = pipeline(
task=Tasks.text_to_image_synthesis, model=model)
img = pipe_line_text_to_image_synthesis(
self.test_text)[OutputKeys.OUTPUT_IMG]
print(np.sum(np.abs(img)))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_model_name(self):
pipe_line_text_to_image_synthesis = pipeline(
task=Tasks.text_to_image_synthesis, model=self.model_id)
img = pipe_line_text_to_image_synthesis(
self.test_text)[OutputKeys.OUTPUT_IMG]
print(np.sum(np.abs(img)))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipe_line_text_to_image_synthesis = pipeline(
task=Tasks.text_to_image_synthesis)
img = pipe_line_text_to_image_synthesis(
self.test_text)[OutputKeys.OUTPUT_IMG]
print(np.sum(np.abs(img)))
if __name__ == '__main__':
unittest.main()