mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 08:17:45 +01:00
* add self supervised depth completion. * update. * fix the problem of key inconsistency. * delete args parser. * rename metrics to test_metrics.
45 lines
1.2 KiB
Python
45 lines
1.2 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from modelscope.metrics.token_classification_metric import \
|
|
TokenClassificationMetric
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestTokenClsMetrics(unittest.TestCase):
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_value(self):
|
|
metric = TokenClassificationMetric()
|
|
|
|
class Trainer:
|
|
pass
|
|
|
|
metric.trainer = Trainer()
|
|
metric.trainer.label2id = {
|
|
'B-obj': 0,
|
|
'I-obj': 1,
|
|
'O': 2,
|
|
}
|
|
|
|
outputs = {
|
|
'logits':
|
|
np.array([[[2.0, 1.0, 0.5], [1.0, 1.5, 1.0], [2.0, 1.0, 3.0],
|
|
[2.4, 1.5, 4.0], [2.0, 1.0, 3.0], [2.4, 1.5, 1.7],
|
|
[2.0, 1.0, 0.5], [2.4, 1.5, 0.5]]])
|
|
}
|
|
inputs = {'labels': np.array([[0, 1, 2, 2, 0, 1, 2, 2]])}
|
|
metric.add(outputs, inputs)
|
|
ret = metric.evaluate()
|
|
self.assertTrue(np.isclose(ret['precision'], 0.25))
|
|
self.assertTrue(np.isclose(ret['recall'], 0.5))
|
|
self.assertTrue(np.isclose(ret['accuracy'], 0.5))
|
|
print(ret)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|