Files
modelscope/maas_lib/pipelines/builder.py
wenmeng.zwm cb416edc2a [to #41669377] add pipeline tutorial and fix bugs
1. add pipleine tutorial
2. fix bugs when using pipeline with certain model and preprocessor

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/8810524
2022-05-24 17:14:58 +08:00

80 lines
2.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
from typing import Union
from maas_lib.models.base import Model
from maas_lib.utils.config import ConfigDict
from maas_lib.utils.constant import Tasks
from maas_lib.utils.registry import Registry, build_from_cfg
from .base import Pipeline
PIPELINES = Registry('pipelines')
def build_pipeline(cfg: ConfigDict,
task_name: str = None,
default_args: dict = None):
""" build pipeline given model config dict.
Args:
cfg (:obj:`ConfigDict`): config dict for model object.
task_name (str, optional): task name, refer to
:obj:`Tasks` for more details.
default_args (dict, optional): Default initialization arguments.
"""
return build_from_cfg(
cfg, PIPELINES, group_key=task_name, default_args=default_args)
def pipeline(task: str = None,
model: Union[str, Model] = None,
preprocessor=None,
config_file: str = None,
pipeline_name: str = None,
framework: str = None,
device: int = -1,
**kwargs) -> Pipeline:
""" Factory method to build a obj:`Pipeline`.
Args:
task (str): Task name defining which pipeline will be returned.
model (str or obj:`Model`): model name or model object.
preprocessor: preprocessor object.
config_file (str, optional): path to config file.
pipeline_name (str, optional): pipeline class name or alias name.
framework (str, optional): framework type.
device (int, optional): which device is used to do inference.
Return:
pipeline (obj:`Pipeline`): pipeline object for certain task.
Examples:
```python
>>> p = pipeline('image-classification')
>>> p = pipeline('text-classification', model='distilbert-base-uncased')
>>> # Using model object
>>> resnet = Model.from_pretrained('Resnet')
>>> p = pipeline('image-classification', model=resnet)
"""
if task is not None and pipeline_name is None:
if model is None or isinstance(model, Model):
# get default pipeline for this task
assert task in PIPELINES.modules, f'No pipeline is registerd for Task {task}'
pipeline_name = list(PIPELINES.modules[task].keys())[0]
cfg = dict(type=pipeline_name, **kwargs)
if model is not None:
cfg['model'] = model
if preprocessor is not None:
cfg['preprocessor'] = preprocessor
else:
assert isinstance(model, str), \
f'model should be either str or Model, but got {type(model)}'
# TODO @wenmeng.zwm determine pipeline_name according to task and model
elif pipeline_name is not None:
cfg = dict(type=pipeline_name)
else:
raise ValueError('task or pipeline_name is required')
return build_pipeline(cfg, task_name=task)