mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-19 09:39:23 +01:00
707 lines
24 KiB
Python
707 lines
24 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import glob
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import cv2
|
|
import json
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.optim import SGD
|
|
from torch.optim.lr_scheduler import StepLR
|
|
from torch.utils.data import IterableDataset
|
|
|
|
from modelscope.metainfo import Metrics, Trainers
|
|
from modelscope.metrics.builder import MetricKeys
|
|
from modelscope.models.base import TorchModel
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.trainers.base import DummyTrainer
|
|
from modelscope.trainers.builder import TRAINERS
|
|
from modelscope.trainers.trainer import EpochBasedTrainer
|
|
from modelscope.utils.constant import LogKeys, ModeKeys, ModelFile, Tasks
|
|
from modelscope.utils.hub import read_config
|
|
from modelscope.utils.test_utils import create_dummy_test_dataset, test_level
|
|
|
|
|
|
class DummyIterableDataset(IterableDataset):
|
|
|
|
def __iter__(self):
|
|
feat = np.random.random(size=(5, )).astype(np.float32)
|
|
labels = np.random.randint(0, 4, (1, ))
|
|
iterations = [{'feat': feat, 'labels': labels}] * 500
|
|
return iter(iterations)
|
|
|
|
|
|
dummy_dataset_small = create_dummy_test_dataset(
|
|
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
|
|
|
|
dummy_dataset_big = create_dummy_test_dataset(
|
|
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 40)
|
|
|
|
|
|
class DummyModel(TorchModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(5, 4)
|
|
self.bn = nn.BatchNorm1d(4)
|
|
|
|
def forward(self, feat, labels):
|
|
x = self.linear(feat)
|
|
|
|
x = self.bn(x)
|
|
loss = torch.sum(x)
|
|
return dict(logits=x, loss=loss)
|
|
|
|
|
|
@TRAINERS.register_module(module_name='test_vis')
|
|
class VisTrainer(EpochBasedTrainer):
|
|
|
|
def visualization(self, results, dataset, **kwargs):
|
|
num_image = 5
|
|
f = 'data/test/images/bird.JPEG'
|
|
filenames = [f for _ in range(num_image)]
|
|
imgs = [cv2.imread(f) for f in filenames]
|
|
filenames = [f + str(i) for i in range(num_image)]
|
|
vis_results = {'images': imgs, 'filenames': filenames}
|
|
|
|
# visualization results will be displayed in group named eva_vis
|
|
self.visualization_buffer.output['eval_vis'] = vis_results
|
|
|
|
|
|
class TrainerTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
shutil.rmtree(self.tmp_dir)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_train_0(self):
|
|
json_cfg = {
|
|
'task': Tasks.image_classification,
|
|
'train': {
|
|
'work_dir':
|
|
self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'optimizer': {
|
|
'type': 'SGD',
|
|
'lr': 0.01,
|
|
'options': {
|
|
'grad_clip': {
|
|
'max_norm': 2.0
|
|
}
|
|
}
|
|
},
|
|
'lr_scheduler': {
|
|
'type': 'StepLR',
|
|
'step_size': 2,
|
|
'options': {
|
|
'warmup': {
|
|
'type': 'LinearWarmup',
|
|
'warmup_iters': 2
|
|
}
|
|
}
|
|
},
|
|
'hooks': [{
|
|
'type': 'CheckpointHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TextLoggerHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'IterTimerHook'
|
|
}, {
|
|
'type': 'EvaluationHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TensorboardHook',
|
|
'interval': 1
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': [Metrics.seq_cls_metric],
|
|
}
|
|
}
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
|
with open(config_path, 'w') as f:
|
|
json.dump(json_cfg, f)
|
|
trainer_name = Trainers.default
|
|
kwargs = dict(
|
|
cfg_file=config_path,
|
|
model=DummyModel(),
|
|
data_collator=None,
|
|
train_dataset=dummy_dataset_small,
|
|
eval_dataset=dummy_dataset_small,
|
|
max_epochs=3,
|
|
device='cpu')
|
|
|
|
trainer = build_trainer(trainer_name, kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
with open(f'{self.tmp_dir}/{trainer.timestamp}.log', 'r') as infile:
|
|
lines = infile.readlines()
|
|
self.assertTrue(len(lines) > 20)
|
|
self.assertIn(f'{trainer.timestamp}.log', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
|
|
self.assertIn('tensorboard_output', results_files)
|
|
self.assertTrue(len(glob.glob(f'{self.tmp_dir}/*/*events*')) > 0)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_train_visualization(self):
|
|
json_cfg = {
|
|
'task': Tasks.image_classification,
|
|
'train': {
|
|
'work_dir':
|
|
self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'optimizer': {
|
|
'type': 'SGD',
|
|
'lr': 0.01,
|
|
'options': {
|
|
'grad_clip': {
|
|
'max_norm': 2.0
|
|
}
|
|
}
|
|
},
|
|
'lr_scheduler': {
|
|
'type': 'StepLR',
|
|
'step_size': 2,
|
|
'options': {
|
|
'warmup': {
|
|
'type': 'LinearWarmup',
|
|
'warmup_iters': 2
|
|
}
|
|
}
|
|
},
|
|
'hooks': [{
|
|
'type': 'CheckpointHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TextLoggerHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'IterTimerHook'
|
|
}, {
|
|
'type': 'EvaluationHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TensorboardHook',
|
|
'interval': 1
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': [Metrics.seq_cls_metric],
|
|
'visualization': {},
|
|
}
|
|
}
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
|
with open(config_path, 'w') as f:
|
|
json.dump(json_cfg, f)
|
|
|
|
trainer_name = 'test_vis'
|
|
kwargs = dict(
|
|
cfg_file=config_path,
|
|
model=DummyModel(),
|
|
data_collator=None,
|
|
train_dataset=dummy_dataset_small,
|
|
eval_dataset=dummy_dataset_small,
|
|
max_epochs=3,
|
|
device='cpu')
|
|
|
|
trainer = build_trainer(trainer_name, kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
|
|
self.assertTrue(len(glob.glob(f'{self.tmp_dir}/*/*events*')) > 0)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_train_1(self):
|
|
json_cfg = {
|
|
'task': Tasks.image_classification,
|
|
'train': {
|
|
'work_dir':
|
|
self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'hooks': [{
|
|
'type': 'CheckpointHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TextLoggerHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'IterTimerHook'
|
|
}, {
|
|
'type': 'EvaluationHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TensorboardHook',
|
|
'interval': 1
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': [Metrics.seq_cls_metric]
|
|
}
|
|
}
|
|
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
|
with open(config_path, 'w') as f:
|
|
json.dump(json_cfg, f)
|
|
|
|
model = DummyModel()
|
|
optimmizer = SGD(model.parameters(), lr=0.01)
|
|
lr_scheduler = StepLR(optimmizer, 2)
|
|
trainer_name = Trainers.default
|
|
kwargs = dict(
|
|
cfg_file=config_path,
|
|
model=model,
|
|
data_collator=None,
|
|
train_dataset=dummy_dataset_small,
|
|
eval_dataset=dummy_dataset_small,
|
|
optimizers=(optimmizer, lr_scheduler),
|
|
max_epochs=3,
|
|
device='cpu')
|
|
|
|
trainer = build_trainer(trainer_name, kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
|
|
self.assertTrue(len(glob.glob(f'{self.tmp_dir}/*/*events*')) > 0)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_train_with_default_config(self):
|
|
json_cfg = {
|
|
'task': Tasks.image_classification,
|
|
'train': {
|
|
'work_dir': self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'hooks': [{
|
|
'type': 'EvaluationHook',
|
|
'interval': 1
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': [Metrics.seq_cls_metric]
|
|
}
|
|
}
|
|
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
|
with open(config_path, 'w') as f:
|
|
json.dump(json_cfg, f)
|
|
|
|
model = DummyModel()
|
|
optimmizer = SGD(model.parameters(), lr=0.01)
|
|
lr_scheduler = StepLR(optimmizer, 2)
|
|
trainer_name = Trainers.default
|
|
kwargs = dict(
|
|
cfg_file=config_path,
|
|
model=model,
|
|
data_collator=None,
|
|
train_dataset=dummy_dataset_big,
|
|
eval_dataset=dummy_dataset_small,
|
|
optimizers=(optimmizer, lr_scheduler),
|
|
max_epochs=3,
|
|
device='cpu')
|
|
|
|
trainer = build_trainer(trainer_name, kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
|
|
json_file = os.path.join(self.tmp_dir, f'{trainer.timestamp}.log.json')
|
|
with open(json_file, 'r', encoding='utf-8') as f:
|
|
lines = [i.strip() for i in f.readlines()]
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 1,
|
|
LogKeys.ITER: 10,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[0]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 1,
|
|
LogKeys.ITER: 20,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[1]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.EVAL,
|
|
LogKeys.EPOCH: 1,
|
|
LogKeys.ITER: 10
|
|
}, json.loads(lines[2]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 2,
|
|
LogKeys.ITER: 10,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[3]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 2,
|
|
LogKeys.ITER: 20,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[4]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.EVAL,
|
|
LogKeys.EPOCH: 2,
|
|
LogKeys.ITER: 10
|
|
}, json.loads(lines[5]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 3,
|
|
LogKeys.ITER: 10,
|
|
LogKeys.LR: 0.001
|
|
}, json.loads(lines[6]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 3,
|
|
LogKeys.ITER: 20,
|
|
LogKeys.LR: 0.001
|
|
}, json.loads(lines[7]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.EVAL,
|
|
LogKeys.EPOCH: 3,
|
|
LogKeys.ITER: 10
|
|
}, json.loads(lines[8]))
|
|
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
|
|
for i in [0, 1, 3, 4, 6, 7]:
|
|
self.assertIn(LogKeys.DATA_LOAD_TIME, lines[i])
|
|
self.assertIn(LogKeys.ITER_TIME, lines[i])
|
|
for i in [2, 5, 8]:
|
|
self.assertIn(MetricKeys.ACCURACY, lines[i])
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_train_with_iters_per_epoch(self):
|
|
json_cfg = {
|
|
'task': Tasks.image_classification,
|
|
'train': {
|
|
'work_dir': self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'hooks': [{
|
|
'type': 'EvaluationHook',
|
|
'interval': 1
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': [Metrics.seq_cls_metric]
|
|
}
|
|
}
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
|
with open(config_path, 'w') as f:
|
|
json.dump(json_cfg, f)
|
|
|
|
model = DummyModel()
|
|
optimmizer = SGD(model.parameters(), lr=0.01)
|
|
lr_scheduler = StepLR(optimmizer, 2)
|
|
trainer_name = Trainers.default
|
|
kwargs = dict(
|
|
cfg_file=config_path,
|
|
model=model,
|
|
data_collator=None,
|
|
optimizers=(optimmizer, lr_scheduler),
|
|
train_dataset=DummyIterableDataset(),
|
|
eval_dataset=DummyIterableDataset(),
|
|
train_iters_per_epoch=20,
|
|
val_iters_per_epoch=10,
|
|
max_epochs=3,
|
|
device='cpu')
|
|
|
|
trainer = build_trainer(trainer_name, kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
json_file = os.path.join(self.tmp_dir, f'{trainer.timestamp}.log.json')
|
|
with open(json_file, 'r', encoding='utf-8') as f:
|
|
lines = [i.strip() for i in f.readlines()]
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 1,
|
|
LogKeys.ITER: 10,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[0]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 1,
|
|
LogKeys.ITER: 20,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[1]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.EVAL,
|
|
LogKeys.EPOCH: 1,
|
|
LogKeys.ITER: 10
|
|
}, json.loads(lines[2]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 2,
|
|
LogKeys.ITER: 10,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[3]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 2,
|
|
LogKeys.ITER: 20,
|
|
LogKeys.LR: 0.01
|
|
}, json.loads(lines[4]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.EVAL,
|
|
LogKeys.EPOCH: 2,
|
|
LogKeys.ITER: 10
|
|
}, json.loads(lines[5]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 3,
|
|
LogKeys.ITER: 10,
|
|
LogKeys.LR: 0.001
|
|
}, json.loads(lines[6]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.TRAIN,
|
|
LogKeys.EPOCH: 3,
|
|
LogKeys.ITER: 20,
|
|
LogKeys.LR: 0.001
|
|
}, json.loads(lines[7]))
|
|
self.assertDictContainsSubset(
|
|
{
|
|
LogKeys.MODE: ModeKeys.EVAL,
|
|
LogKeys.EPOCH: 3,
|
|
LogKeys.ITER: 10
|
|
}, json.loads(lines[8]))
|
|
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
|
|
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
|
|
for i in [0, 1, 3, 4, 6, 7]:
|
|
self.assertIn(LogKeys.DATA_LOAD_TIME, lines[i])
|
|
self.assertIn(LogKeys.ITER_TIME, lines[i])
|
|
for i in [2, 5, 8]:
|
|
self.assertIn(MetricKeys.ACCURACY, lines[i])
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_train_with_old_and_new_cfg(self):
|
|
old_cfg = {
|
|
'task': Tasks.image_classification,
|
|
'train': {
|
|
'work_dir':
|
|
self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'optimizer': {
|
|
'type': 'SGD',
|
|
'lr': 0.01,
|
|
'options': {
|
|
'grad_clip': {
|
|
'max_norm': 2.0
|
|
}
|
|
}
|
|
},
|
|
'lr_scheduler': {
|
|
'type': 'StepLR',
|
|
'step_size': 2,
|
|
'options': {
|
|
'warmup': {
|
|
'type': 'LinearWarmup',
|
|
'warmup_iters': 2
|
|
}
|
|
}
|
|
},
|
|
'hooks': [{
|
|
'type': 'CheckpointHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TextLoggerHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'IterTimerHook'
|
|
}, {
|
|
'type': 'EvaluationHook',
|
|
'interval': 1
|
|
}, {
|
|
'type': 'TensorboardHook',
|
|
'interval': 1
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': [Metrics.seq_cls_metric],
|
|
}
|
|
}
|
|
|
|
new_cfg = {
|
|
'task': Tasks.image_classification,
|
|
'train': {
|
|
'work_dir':
|
|
self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'optimizer': {
|
|
'type': 'SGD',
|
|
'lr': 0.01,
|
|
'options': {
|
|
'grad_clip': {
|
|
'max_norm': 2.0
|
|
}
|
|
}
|
|
},
|
|
'lr_scheduler': {
|
|
'type': 'StepLR',
|
|
'step_size': 2,
|
|
'options': {
|
|
'warmup': {
|
|
'type': 'LinearWarmup',
|
|
'warmup_iters': 2
|
|
}
|
|
}
|
|
},
|
|
'checkpoint': {
|
|
'period': {
|
|
'interval': 1
|
|
}
|
|
},
|
|
'logging': {
|
|
'interval': 1
|
|
},
|
|
'hooks': [{
|
|
'type': 'IterTimerHook'
|
|
}, {
|
|
'type': 'TensorboardHook',
|
|
'interval': 1
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': [Metrics.seq_cls_metric],
|
|
'period': {
|
|
'interval': 1
|
|
}
|
|
}
|
|
}
|
|
|
|
def assert_new_cfg(cfg):
|
|
self.assertNotIn('CheckpointHook', cfg.train.hooks)
|
|
self.assertNotIn('TextLoggerHook', cfg.train.hooks)
|
|
self.assertNotIn('EvaluationHook', cfg.train.hooks)
|
|
self.assertIn('checkpoint', cfg.train)
|
|
self.assertIn('logging', cfg.train)
|
|
self.assertIn('period', cfg.evaluation)
|
|
|
|
for json_cfg in (new_cfg, old_cfg):
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
|
with open(config_path, 'w') as f:
|
|
json.dump(json_cfg, f)
|
|
trainer_name = Trainers.default
|
|
kwargs = dict(
|
|
cfg_file=config_path,
|
|
model=DummyModel(),
|
|
data_collator=None,
|
|
train_dataset=dummy_dataset_small,
|
|
eval_dataset=dummy_dataset_small,
|
|
max_epochs=3,
|
|
device='cpu')
|
|
|
|
trainer = build_trainer(trainer_name, kwargs)
|
|
assert_new_cfg(trainer.cfg)
|
|
trainer.train()
|
|
cfg = read_config(os.path.join(self.tmp_dir, 'output'))
|
|
assert_new_cfg(cfg)
|
|
|
|
|
|
class DummyTrainerTest(unittest.TestCase):
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_dummy(self):
|
|
default_args = dict(cfg_file='configs/examples/train.json')
|
|
trainer = build_trainer('dummy', default_args)
|
|
|
|
trainer.train()
|
|
trainer.evaluate()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|