mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 04:29:22 +01:00
127 lines
5.7 KiB
Python
127 lines
5.7 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.models import Model
|
|
from modelscope.models.nlp import ModelForTokenClassificationWithCRF
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.nlp import NamedEntityRecognitionPipeline
|
|
from modelscope.preprocessors import NERPreprocessorThai, NERPreprocessorViet
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class MultilingualNamedEntityRecognitionTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.named_entity_recognition
|
|
self.model_id = 'damo/nlp_xlmr_named-entity-recognition_thai-ecommerce-title'
|
|
|
|
thai_tcrf_model_id = 'damo/nlp_xlmr_named-entity-recognition_thai-ecommerce-title'
|
|
thai_sentence = 'เครื่องชั่งดิจิตอลแบบตั้งพื้น150kg.'
|
|
|
|
viet_tcrf_model_id = 'damo/nlp_xlmr_named-entity-recognition_viet-ecommerce-title'
|
|
viet_sentence = 'Nón vành dễ thương cho bé gái'
|
|
|
|
multilingual_model_id = 'damo/nlp_raner_named-entity-recognition_multilingual-large-generic'
|
|
ml_stc = 'সমস্ত বেতন নিলামের সাধারণ ব্যবহারিক উদাহরণ বিভিন্ন পেনি নিলাম / বিডিং ফি নিলাম ওয়েবসাইটে পাওয়া যাবে।'
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_tcrf_by_direct_model_download_thai(self):
|
|
cache_path = snapshot_download(self.thai_tcrf_model_id)
|
|
tokenizer = NERPreprocessorThai(cache_path)
|
|
model = ModelForTokenClassificationWithCRF.from_pretrained(cache_path)
|
|
pipeline1 = NamedEntityRecognitionPipeline(
|
|
model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.named_entity_recognition,
|
|
model=model,
|
|
preprocessor=tokenizer)
|
|
print(f'thai_sentence: {self.thai_sentence}\n'
|
|
f'pipeline1:{pipeline1(input=self.thai_sentence)}')
|
|
print()
|
|
print(f'pipeline2: {pipeline2(input=self.thai_sentence)}')
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_run_tcrf_with_model_from_modelhub_thai(self):
|
|
model = Model.from_pretrained(self.thai_tcrf_model_id)
|
|
tokenizer = NERPreprocessorThai(model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition,
|
|
model=model,
|
|
preprocessor=tokenizer)
|
|
print(pipeline_ins(input=self.thai_sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_tcrf_with_model_name_thai(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition, model=self.thai_tcrf_model_id)
|
|
print(pipeline_ins(input=self.thai_sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_tcrf_with_model_name_multilingual(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition,
|
|
model=self.multilingual_model_id)
|
|
print(pipeline_ins(input=self.ml_stc))
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_tcrf_by_direct_model_download_viet(self):
|
|
cache_path = snapshot_download(self.viet_tcrf_model_id)
|
|
tokenizer = NERPreprocessorViet(cache_path)
|
|
model = ModelForTokenClassificationWithCRF.from_pretrained(cache_path)
|
|
pipeline1 = NamedEntityRecognitionPipeline(
|
|
model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.named_entity_recognition,
|
|
model=model,
|
|
preprocessor=tokenizer)
|
|
print(f'viet_sentence: {self.viet_sentence}\n'
|
|
f'pipeline1:{pipeline1(input=self.viet_sentence)}')
|
|
print()
|
|
print(f'pipeline2: {pipeline2(input=self.viet_sentence)}')
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_run_tcrf_with_model_from_modelhub_viet(self):
|
|
model = Model.from_pretrained(self.viet_tcrf_model_id)
|
|
tokenizer = NERPreprocessorViet(model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition,
|
|
model=model,
|
|
preprocessor=tokenizer)
|
|
print(pipeline_ins(input=self.viet_sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_tcrf_with_model_name_viet(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition, model=self.viet_tcrf_model_id)
|
|
print(pipeline_ins(input=self.viet_sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_tcrf_with_model_name_viet_batch(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition, model=self.viet_tcrf_model_id)
|
|
print(
|
|
pipeline_ins(
|
|
input=[
|
|
self.viet_sentence, self.viet_sentence[:10],
|
|
self.viet_sentence[5:]
|
|
],
|
|
batch_size=2))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_tcrf_with_model_name_viet_batch_iter(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition,
|
|
model=self.viet_tcrf_model_id,
|
|
padding=False)
|
|
print(
|
|
pipeline_ins(input=[
|
|
self.viet_sentence, self.viet_sentence[:10],
|
|
self.viet_sentence[5:]
|
|
]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|