Files
modelscope/tests/pipelines/test_multilingual_named_entity_recognition.py
xingjun.wang 48c0d2a9af add 1.6
2023-05-22 10:53:18 +08:00

127 lines
5.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import ModelForTokenClassificationWithCRF
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import NamedEntityRecognitionPipeline
from modelscope.preprocessors import NERPreprocessorThai, NERPreprocessorViet
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class MultilingualNamedEntityRecognitionTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.named_entity_recognition
self.model_id = 'damo/nlp_xlmr_named-entity-recognition_thai-ecommerce-title'
thai_tcrf_model_id = 'damo/nlp_xlmr_named-entity-recognition_thai-ecommerce-title'
thai_sentence = 'เครื่องชั่งดิจิตอลแบบตั้งพื้น150kg.'
viet_tcrf_model_id = 'damo/nlp_xlmr_named-entity-recognition_viet-ecommerce-title'
viet_sentence = 'Nón vành dễ thương cho bé gái'
multilingual_model_id = 'damo/nlp_raner_named-entity-recognition_multilingual-large-generic'
ml_stc = 'সমস্ত বেতন নিলামের সাধারণ ব্যবহারিক উদাহরণ বিভিন্ন পেনি নিলাম / বিডিং ফি নিলাম ওয়েবসাইটে পাওয়া যাবে।'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_tcrf_by_direct_model_download_thai(self):
cache_path = snapshot_download(self.thai_tcrf_model_id)
tokenizer = NERPreprocessorThai(cache_path)
model = ModelForTokenClassificationWithCRF.from_pretrained(cache_path)
pipeline1 = NamedEntityRecognitionPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(f'thai_sentence: {self.thai_sentence}\n'
f'pipeline1:{pipeline1(input=self.thai_sentence)}')
print()
print(f'pipeline2: {pipeline2(input=self.thai_sentence)}')
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_tcrf_with_model_from_modelhub_thai(self):
model = Model.from_pretrained(self.thai_tcrf_model_id)
tokenizer = NERPreprocessorThai(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=self.thai_sentence))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_tcrf_with_model_name_thai(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition, model=self.thai_tcrf_model_id)
print(pipeline_ins(input=self.thai_sentence))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_tcrf_with_model_name_multilingual(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition,
model=self.multilingual_model_id)
print(pipeline_ins(input=self.ml_stc))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_tcrf_by_direct_model_download_viet(self):
cache_path = snapshot_download(self.viet_tcrf_model_id)
tokenizer = NERPreprocessorViet(cache_path)
model = ModelForTokenClassificationWithCRF.from_pretrained(cache_path)
pipeline1 = NamedEntityRecognitionPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(f'viet_sentence: {self.viet_sentence}\n'
f'pipeline1:{pipeline1(input=self.viet_sentence)}')
print()
print(f'pipeline2: {pipeline2(input=self.viet_sentence)}')
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_tcrf_with_model_from_modelhub_viet(self):
model = Model.from_pretrained(self.viet_tcrf_model_id)
tokenizer = NERPreprocessorViet(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=self.viet_sentence))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_tcrf_with_model_name_viet(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition, model=self.viet_tcrf_model_id)
print(pipeline_ins(input=self.viet_sentence))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_tcrf_with_model_name_viet_batch(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition, model=self.viet_tcrf_model_id)
print(
pipeline_ins(
input=[
self.viet_sentence, self.viet_sentence[:10],
self.viet_sentence[5:]
],
batch_size=2))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_tcrf_with_model_name_viet_batch_iter(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition,
model=self.viet_tcrf_model_id,
padding=False)
print(
pipeline_ins(input=[
self.viet_sentence, self.viet_sentence[:10],
self.viet_sentence[5:]
]))
if __name__ == '__main__':
unittest.main()