mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-21 18:49:23 +01:00
52 lines
1.8 KiB
Python
52 lines
1.8 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
import json
|
|
import torch
|
|
|
|
from modelscope.models import Model
|
|
from modelscope.models.nlp import DocumentGroundedDialogRerankModel
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.pipelines.nlp import DocumentGroundedDialogRerankPipeline
|
|
from modelscope.preprocessors.nlp import \
|
|
DocumentGroundedDialogRerankPreprocessor
|
|
from modelscope.utils.constant import DownloadMode, Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class DocumentGroundedDialogRerankTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.document_grounded_dialog_rerank
|
|
self.model_id = 'DAMO_ConvAI/nlp_convai_ranking_pretrain'
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run(self):
|
|
args = {
|
|
'output': '../../../result.json',
|
|
'max_batch_size': 64,
|
|
'exclude_instances': '',
|
|
'include_passages': False,
|
|
'do_lower_case': True,
|
|
'max_seq_length': 512,
|
|
'query_length': 195,
|
|
'tokenizer_resize': True,
|
|
'model_resize': True,
|
|
'kilt_data': True
|
|
}
|
|
model = Model.from_pretrained(self.model_id, revision='v1.0.0', **args)
|
|
mypreprocessor = DocumentGroundedDialogRerankPreprocessor(
|
|
model.model_dir, **args)
|
|
pipeline_ins = DocumentGroundedDialogRerankPipeline(
|
|
model=model, preprocessor=mypreprocessor, **args)
|
|
dataset = MsDataset.load(
|
|
'DAMO_ConvAI/FrDoc2BotRerank',
|
|
download_mode=DownloadMode.FORCE_REDOWNLOAD,
|
|
split='test')[:2]
|
|
# print(dataset)
|
|
pipeline_ins(dataset)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|