mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
from collections import OrderedDict
|
|
|
|
from modelscope.exporters import Exporter, TorchModelExporter
|
|
from modelscope.models import Model
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestExportTokenClassification(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
self.model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_export_token_classification(self):
|
|
model = Model.from_pretrained(self.model_id)
|
|
with self.subTest(format='onnx'):
|
|
print(
|
|
Exporter.from_model(model).export_onnx(
|
|
output_dir=self.tmp_dir))
|
|
with self.subTest(format='torchscript'):
|
|
print(
|
|
Exporter.from_model(model).export_torch_script(
|
|
output_dir=self.tmp_dir))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|