Files
modelscope/tests/export/test_export_tf_model.py
yuze.zyz 4dca4773db Support csanmt exporting and refactor some code
1. Support csanmt exporting to savedmodel format
2. Create a new base class for text-ranking preprocessors, and move some parameters of mgeo_ranking_preprocessor to init method
3. Avoid Model & Preprocessor classes coupled with pytorch
4. Regression test supports comparing only model output
5. Support zero-shot exporting to onnx and torchscript

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11522461
2023-02-10 05:15:04 +00:00

51 lines
1.5 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing import image
from modelscope.exporters import TfModelExporter
from modelscope.utils.test_utils import test_level
class TestExportTfModel(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_export_resnet50(self):
img_path = 'data/test/images/auto_demo.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
x_t = tf.convert_to_tensor(x)
model = ResNet50(weights='imagenet')
def call_func(inputs):
return [model.predict(list(inputs.values())[0])]
output_files = TfModelExporter().export_onnx(
model=model,
dummy_inputs={'input': x_t},
call_func=call_func,
output_dir=self.tmp_dir)
print(output_files)
if __name__ == '__main__':
unittest.main()