Files
modelscope/tests/pipelines/test_language_guided_video_summarization.py
mulin.lyh cba4e40bc1 fix numpy pandas compatible issue
明确受影响的模型(damo):  
ONE-PEACE-4B	ModuleNotFoundError: MyCustomPipeline: MyCustomModel: No module named 'one_peace',缺少依赖。
cv_resnet50_face-reconstruction	 不兼容tf2  
nlp_automatic_post_editing_for_translation_en2de	tf2.0兼容性问题,tf1.x需要  
cv_resnet18_ocr-detection-word-level_damo	tf2.x兼容性问题  
cv_resnet18_ocr-detection-line-level_damo	tf兼容性问题  
cv_resnet101_detection_fewshot-defrcn	模型限制必须detection0.3+torch1.11.0"  
speech_dfsmn_ans_psm_48k_causal	"librosa, numpy兼容性问题  
cv_mdm_motion-generation	"依赖numpy版本兼容性问题:   File ""/opt/conda/lib/python3.8/site-packages/smplx/body_models.py"",  
cv_resnet50_ocr-detection-vlpt	numpy兼容性问题  
cv_clip-it_video-summarization_language-guided_en	tf兼容性问题

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13744636
* numpy and pandas no version

* modify compatible issue

* fix numpy compatible issue

* modify ci

* fix lint issue

* replace Image.ANTIALIAS to Image.Resampling.LANCZOS pillow compatible

* skip uncompatible cases

* fix numpy compatible issue, skip cases that can not compatbile numpy or tensorflow2.x

* skip compatible cases

* fix clip model issue

* fix body 3d keypoints compatible issue
2023-08-22 23:04:31 +08:00

45 lines
1.5 KiB
Python
Executable File

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import torch
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
@unittest.skip('For tensorflow 2.x compatible')
class LanguageGuidedVideoSummarizationTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.language_guided_video_summarization
self.model_id = 'damo/cv_clip-it_video-summarization_language-guided_en'
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_modelhub(self):
video_path = 'data/test/videos/video_category_test_video.mp4'
# input can be sentences such as sentences=['phone', 'hand'], or sentences=None
sentences = None
summarization_pipeline = pipeline(
Tasks.language_guided_video_summarization, model=self.model_id)
result = summarization_pipeline((video_path, sentences))
print(f'video summarization output: \n{result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_modelhub_default_model(self):
video_path = 'data/test/videos/video_category_test_video.mp4'
summarization_pipeline = pipeline(
Tasks.language_guided_video_summarization)
result = summarization_pipeline(video_path)
print(f'video summarization output:\n {result}.')
if __name__ == '__main__':
unittest.main()