mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-17 16:57:42 +01:00
169 lines
8.2 KiB
Python
169 lines
8.2 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.models import Model
|
|
from modelscope.models.nlp import (LSTMForTokenClassificationWithCRF,
|
|
SbertForTokenClassification)
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.nlp import WordSegmentationPipeline
|
|
from modelscope.preprocessors import \
|
|
TokenClassificationTransformersPreprocessor
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.regress_test_utils import IgnoreKeyFn, MsRegressTool
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class WordSegmentationTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.word_segmentation
|
|
self.model_id = 'damo/nlp_structbert_word-segmentation_chinese-base'
|
|
self.ecom_model_id = 'damo/nlp_structbert_word-segmentation_chinese-base-ecommerce'
|
|
self.lstmcrf_news_model_id = 'damo/nlp_lstmcrf_word-segmentation_chinese-news'
|
|
self.lstmcrf_ecom_model_id = 'damo/nlp_lstmcrf_word-segmentation_chinese-ecommerce'
|
|
|
|
sentence = '今天天气不错,适合出去游玩'
|
|
sentence_ecom = '东阳草肌醇复合物'
|
|
sentence_eng = 'I am a program.'
|
|
regress_tool = MsRegressTool(baseline=False)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_by_direct_model_download(self):
|
|
cache_path = snapshot_download(self.model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
|
|
model = SbertForTokenClassification.from_pretrained(cache_path)
|
|
pipeline1 = WordSegmentationPipeline(model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(f'sentence: {self.sentence}\n'
|
|
f'pipeline1:{pipeline1(input=self.sentence)}')
|
|
print(f'pipeline2: {pipeline2(input=self.sentence)}')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_ecom_by_direct_model_download(self):
|
|
cache_path = snapshot_download(self.ecom_model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
|
|
model = SbertForTokenClassification.from_pretrained(cache_path)
|
|
pipeline1 = WordSegmentationPipeline(model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(f'sentence: {self.sentence_ecom}\n'
|
|
f'pipeline1:{pipeline1(input=self.sentence_ecom)}')
|
|
print(f'pipeline2: {pipeline2(input=self.sentence_ecom)}')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_lstmcrf_news_by_direct_model_download(self):
|
|
cache_path = snapshot_download(self.lstmcrf_news_model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
|
|
model = LSTMForTokenClassificationWithCRF.from_pretrained(cache_path)
|
|
pipeline1 = WordSegmentationPipeline(model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(f'sentence: {self.sentence}\n'
|
|
f'pipeline1:{pipeline1(input=self.sentence)}')
|
|
print(f'pipeline2: {pipeline2(input=self.sentence)}')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_lstmcrf_ecom_by_direct_model_download(self):
|
|
cache_path = snapshot_download(self.lstmcrf_ecom_model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
|
|
model = LSTMForTokenClassificationWithCRF.from_pretrained(cache_path)
|
|
pipeline1 = WordSegmentationPipeline(model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(f'sentence: {self.sentence_ecom}\n'
|
|
f'pipeline1:{pipeline1(input=self.sentence_ecom)}')
|
|
print(f'pipeline2: {pipeline2(input=self.sentence_ecom)}')
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_run_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(
|
|
model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(pipeline_ins(input=self.sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_run_ecom_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.ecom_model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(
|
|
model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(pipeline_ins(input=self.sentence_ecom))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_lstmcrf_news_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.lstmcrf_news_model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(
|
|
model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(pipeline_ins(input=self.sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_run_lstmcrf_ecom_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.lstmcrf_ecom_model_id)
|
|
tokenizer = TokenClassificationTransformersPreprocessor(
|
|
model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer)
|
|
print(pipeline_ins(input=self.sentence_ecom))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=self.model_id)
|
|
with self.regress_tool.monitor_module_single_forward(
|
|
pipeline_ins.model,
|
|
'sbert_ws_zh',
|
|
compare_fn=IgnoreKeyFn('.*intermediate_act_fn')):
|
|
print(pipeline_ins(input=self.sentence))
|
|
print(pipeline_ins(input=self.sentence_eng))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_ecom_with_model_name(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=self.ecom_model_id)
|
|
print(pipeline_ins(input=self.sentence_ecom))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_lstmcrf_news_with_model_name(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=self.lstmcrf_news_model_id)
|
|
print(pipeline_ins(input=self.sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_lstmcrf_ecom_with_model_name(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=self.lstmcrf_ecom_model_id)
|
|
print(pipeline_ins(input=self.sentence_ecom))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name_batch(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=self.model_id)
|
|
print(
|
|
pipeline_ins(
|
|
input=[self.sentence, self.sentence[:5], self.sentence[5:]],
|
|
batch_size=2))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name_batch_iter(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.word_segmentation, model=self.model_id, padding=False)
|
|
print(
|
|
pipeline_ins(
|
|
input=[self.sentence, self.sentence[:5], self.sentence[5:]]))
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_default_model(self):
|
|
pipeline_ins = pipeline(task=Tasks.word_segmentation)
|
|
print(pipeline_ins(input=self.sentence))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|