Files
modelscope/tests/pipelines/test_video_object_segmentation.py

51 lines
1.8 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import unittest
from PIL import Image
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.cv.image_utils import masks_visualization
from modelscope.utils.test_utils import test_level
class VideoObjectSegmentationTest(unittest.TestCase):
def setUp(self) -> None:
self.task = 'video-object-segmentation'
self.model_id = 'damo/cv_rdevos_video-object-segmentation'
self.input_location = 'data/test/videos/video_object_segmentation_test'
self.images_dir = os.path.join(self.input_location, 'JPEGImages')
self.mask_file = os.path.join(self.input_location, 'Annotations',
'00000.png')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_video_object_segmentation(self):
input_images = []
for image_file in sorted(os.listdir(self.images_dir)):
img = Image.open(os.path.join(self.images_dir, image_file))\
.convert('RGB')
input_images.append(img)
mask = Image.open(self.mask_file).convert('P')
input = {'images': input_images, 'mask': mask}
segmentor = pipeline(
Tasks.video_object_segmentation, model=self.model_id)
result = segmentor(input)
out_masks = result[OutputKeys.MASKS]
vis_masks = masks_visualization(out_masks, mask.getpalette())
os.makedirs('test_result', exist_ok=True)
for f, vis_mask in enumerate(vis_masks):
vis_mask.save(os.path.join('test_result', '{:05d}.png'.format(f)))
print('test_video_object_segmentation DONE')
if __name__ == '__main__':
unittest.main()