mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-17 00:37:43 +01:00
115 lines
4.9 KiB
Python
115 lines
4.9 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
import torch
|
|
from packaging import version
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.models import Model, TorchModel
|
|
from modelscope.models.nlp import SbertForSequenceClassification
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.nlp import TextClassificationPipeline
|
|
from modelscope.preprocessors import TextClassificationTransformersPreprocessor
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.regress_test_utils import IgnoreKeyFn, MsRegressTool
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class SentenceSimilarityTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.sentence_similarity
|
|
self.model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
|
|
self.model_id_retail = 'damo/nlp_structbert_sentence-similarity_chinese-retail-base'
|
|
|
|
sentence1 = '今天气温比昨天高么?'
|
|
sentence2 = '今天湿度比昨天高么?'
|
|
regress_tool = MsRegressTool(baseline=False)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run(self):
|
|
cache_path = snapshot_download(self.model_id)
|
|
tokenizer = TextClassificationTransformersPreprocessor(cache_path)
|
|
model = SbertForSequenceClassification.from_pretrained(cache_path)
|
|
pipeline1 = TextClassificationPipeline(model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.sentence_similarity, model=model, preprocessor=tokenizer)
|
|
print('test1')
|
|
print(f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
|
|
f'pipeline1:{pipeline1(input=(self.sentence1, self.sentence2))}')
|
|
print()
|
|
print(
|
|
f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
|
|
f'pipeline1: {pipeline2(input=(self.sentence1, self.sentence2))}')
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.model_id)
|
|
tokenizer = TextClassificationTransformersPreprocessor(model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.sentence_similarity,
|
|
model=model,
|
|
preprocessor=tokenizer)
|
|
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name_batch(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.sentence_similarity, model=self.model_id)
|
|
print(
|
|
pipeline_ins(
|
|
input=[(self.sentence1, self.sentence2),
|
|
(self.sentence1[:4], self.sentence2[5:]),
|
|
(self.sentence1[2:], self.sentence2[:8])],
|
|
batch_size=2))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name_batch_iter(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.sentence_similarity, model=self.model_id, padding=False)
|
|
print(
|
|
pipeline_ins(input=[(
|
|
self.sentence1,
|
|
self.sentence2), (self.sentence1[:4], self.sentence2[5:]
|
|
), (self.sentence1[2:],
|
|
self.sentence2[:8])]))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.sentence_similarity, model=self.model_id)
|
|
with self.regress_tool.monitor_module_single_forward(
|
|
pipeline_ins.model,
|
|
'sbert_sen_sim',
|
|
compare_fn=IgnoreKeyFn('.*intermediate_act_fn')):
|
|
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_retail_similarity_model(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.sentence_similarity,
|
|
model=self.model_id_retail,
|
|
model_revision='v1.0.0')
|
|
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
|
|
|
@unittest.skipIf(
|
|
version.parse(torch.__version__) < version.parse('2.0.0.dev'),
|
|
'skip when torch version < 2.0')
|
|
def test_compile(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.sentence_similarity,
|
|
model=self.model_id_retail,
|
|
model_revision='v1.0.0',
|
|
compile=True)
|
|
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
|
self.assertTrue(isinstance(pipeline_ins.model._orig_mod, TorchModel))
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_default_model(self):
|
|
pipeline_ins = pipeline(task=Tasks.sentence_similarity)
|
|
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|