Files
modelscope/tests/pipelines/test_sentence_similarity.py

115 lines
4.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
import torch
from packaging import version
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model, TorchModel
from modelscope.models.nlp import SbertForSequenceClassification
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import TextClassificationPipeline
from modelscope.preprocessors import TextClassificationTransformersPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.regress_test_utils import IgnoreKeyFn, MsRegressTool
from modelscope.utils.test_utils import test_level
class SentenceSimilarityTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.sentence_similarity
self.model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
self.model_id_retail = 'damo/nlp_structbert_sentence-similarity_chinese-retail-base'
sentence1 = '今天气温比昨天高么?'
sentence2 = '今天湿度比昨天高么?'
regress_tool = MsRegressTool(baseline=False)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run(self):
cache_path = snapshot_download(self.model_id)
tokenizer = TextClassificationTransformersPreprocessor(cache_path)
model = SbertForSequenceClassification.from_pretrained(cache_path)
pipeline1 = TextClassificationPipeline(model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.sentence_similarity, model=model, preprocessor=tokenizer)
print('test1')
print(f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
f'pipeline1:{pipeline1(input=(self.sentence1, self.sentence2))}')
print()
print(
f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
f'pipeline1: {pipeline2(input=(self.sentence1, self.sentence2))}')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = TextClassificationTransformersPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.sentence_similarity,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name_batch(self):
pipeline_ins = pipeline(
task=Tasks.sentence_similarity, model=self.model_id)
print(
pipeline_ins(
input=[(self.sentence1, self.sentence2),
(self.sentence1[:4], self.sentence2[5:]),
(self.sentence1[2:], self.sentence2[:8])],
batch_size=2))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name_batch_iter(self):
pipeline_ins = pipeline(
task=Tasks.sentence_similarity, model=self.model_id, padding=False)
print(
pipeline_ins(input=[(
self.sentence1,
self.sentence2), (self.sentence1[:4], self.sentence2[5:]
), (self.sentence1[2:],
self.sentence2[:8])]))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.sentence_similarity, model=self.model_id)
with self.regress_tool.monitor_module_single_forward(
pipeline_ins.model,
'sbert_sen_sim',
compare_fn=IgnoreKeyFn('.*intermediate_act_fn')):
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_retail_similarity_model(self):
pipeline_ins = pipeline(
task=Tasks.sentence_similarity,
model=self.model_id_retail,
model_revision='v1.0.0')
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
@unittest.skipIf(
version.parse(torch.__version__) < version.parse('2.0.0.dev'),
'skip when torch version < 2.0')
def test_compile(self):
pipeline_ins = pipeline(
task=Tasks.sentence_similarity,
model=self.model_id_retail,
model_revision='v1.0.0',
compile=True)
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
self.assertTrue(isinstance(pipeline_ins.model._orig_mod, TorchModel))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.sentence_similarity)
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
if __name__ == '__main__':
unittest.main()