mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-18 17:27:43 +01:00
* allow token classification pipelines to predict longer sentences * bugfix * skip adaseq pipeline ut when connection error occurs * return entity probabilities
494 lines
19 KiB
Python
494 lines
19 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
import unittest
|
||
|
||
from modelscope.hub.snapshot_download import snapshot_download
|
||
from modelscope.models import Model
|
||
from modelscope.models.nlp import (LSTMForTokenClassificationWithCRF,
|
||
ModelForTokenClassificationWithCRF)
|
||
from modelscope.pipelines import pipeline
|
||
from modelscope.pipelines.nlp import NamedEntityRecognitionPipeline
|
||
from modelscope.preprocessors import \
|
||
TokenClassificationTransformersPreprocessor
|
||
from modelscope.utils.constant import Tasks
|
||
from modelscope.utils.test_utils import test_level
|
||
|
||
|
||
class NamedEntityRecognitionTest(unittest.TestCase):
|
||
language_examples = {
|
||
'zh':
|
||
'新华社北京二月十一日电(记者唐虹)',
|
||
'en':
|
||
'Italy recalled Marcello Cuttitta',
|
||
'ru':
|
||
'важным традиционным промыслом является производство пальмового масла .',
|
||
'fr':
|
||
'fer à souder électronique',
|
||
'es':
|
||
'el primer avistamiento por europeos de esta zona fue en 1606 , '
|
||
'en la expedición española mandada por luis váez de torres .',
|
||
'nl':
|
||
'in het vorige seizoen promoveerden sc cambuur , dat kampioen werd en go ahead eagles via de play offs .',
|
||
'tr':
|
||
'köyün pırasa kavurması ve içi yağlama ve akıtma adındaki hamur işleri meşhurdur . ; çörek ekmeği ; '
|
||
'diye adlandırdıkları mayasız ekmeği unutmamaklazım .',
|
||
'ko':
|
||
'국립진주박물관은 1984년 11월 2일 개관하였으며 한국 전통목조탑을 석조 건물로 형상화한 것으로 건축가 김수근 선생의 대표적 작품이다 .',
|
||
'fa':
|
||
'ﺞﻤﻋیﺕ ﺍیﻥ ﺎﺴﺗﺎﻧ ۳۰ ﻩﺯﺍﺭ ﻦﻓﺭ ﺎﺴﺗ ﻭ ﻢﻧﺎﺒﻋ ﻢﻬﻣی ﺍﺯ ﺲﻧگ ﺂﻬﻧ ﺩﺍﺭﺩ .',
|
||
'de':
|
||
'die szene beinhaltete lenny baker und christopher walken .',
|
||
'hi':
|
||
'१४९२ में एक चार्टर के आधार पर, उसके पिता ने उसे वाडोविस के उत्तराधिकारी के रूप में छोड़ दिया।',
|
||
'bn':
|
||
'যদিও গির্জার সবসময় রাজকীয় পিউ থাকত, তবে গির্জায় রাজকীয়ভাবে এটিই ছিল প্রথম দেখা।',
|
||
'multi':
|
||
'新华社北京二月十一日电(记者唐虹)',
|
||
}
|
||
|
||
all_modelcards_info = [
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-news',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-social_media',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-generic',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-resume',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id': 'damo/nlp_lstm_named-entity-recognition_chinese-news',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_lstm_named-entity-recognition_chinese-social_media',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_lstm_named-entity-recognition_chinese-generic',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_lstm_named-entity-recognition_chinese-resume',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-book',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-finance',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-game',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-bank',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-literature',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-cmeee',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-news',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-social_media',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-literature',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-politics',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-music',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-science',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-ai',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-wiki',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-large-generic',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-generic',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_multilingual-large-generic',
|
||
'language': 'multi'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_russian-large-generic',
|
||
'language': 'ru'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_spanish-large-generic',
|
||
'language': 'es'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_dutch-large-generic',
|
||
'language': 'nl'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_turkish-large-generic',
|
||
'language': 'tr'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_korean-large-generic',
|
||
'language': 'ko'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_farsi-large-generic',
|
||
'language': 'fa'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_german-large-generic',
|
||
'language': 'de'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_hindi-large-generic',
|
||
'language': 'hi'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_bangla-large-generic',
|
||
'language': 'bn'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-ecom',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_chinese-base-ecom-50cls',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_english-large-ecom',
|
||
'language': 'en'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_russian-large-ecom',
|
||
'language': 'ru'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_french-large-ecom',
|
||
'language': 'fr'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_raner_named-entity-recognition_spanish-large-ecom',
|
||
'language': 'es'
|
||
},
|
||
{
|
||
'model_id':
|
||
'damo/nlp_structbert_keyphrase-extraction_base-icassp2023-mug-track4-baseline',
|
||
'language': 'zh'
|
||
},
|
||
{
|
||
'model_id': 'damo/nlp_raner_chunking_english-large',
|
||
'language': 'en'
|
||
},
|
||
]
|
||
|
||
def setUp(self) -> None:
|
||
self.task = Tasks.named_entity_recognition
|
||
self.model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
|
||
self.english_model_id = 'damo/nlp_raner_named-entity-recognition_english-large-ecom'
|
||
self.chinese_model_id = 'damo/nlp_raner_named-entity-recognition_chinese-large-generic'
|
||
self.tcrf_model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
|
||
self.lcrf_model_id = 'damo/nlp_lstm_named-entity-recognition_chinese-news'
|
||
self.addr_model_id = 'damo/nlp_structbert_address-parsing_chinese_base'
|
||
self.lstm_model_id = 'damo/nlp_lstm_named-entity-recognition_chinese-generic'
|
||
self.sentence = '这与温岭市新河镇的一个神秘的传说有关。[SEP]地名'
|
||
self.sentence_en = 'pizza shovel'
|
||
self.sentence_zh = '他 继 续 与 貝 塞 斯 達 遊 戲 工 作 室 在 接 下 来 辐 射 4 游 戏 。'
|
||
self.addr = '浙江省杭州市余杭区文一西路969号亲橙里'
|
||
self.addr1 = '浙江省西湖区灵隐隧道'
|
||
self.addr2 = '内蒙古自治区巴彦淖尔市'
|
||
self.ecom = '欧美单 秋季女装时尚百搭休闲修身 亚麻混纺短款 外套西装'
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_tcrf_by_direct_model_download(self):
|
||
cache_path = snapshot_download(self.tcrf_model_id)
|
||
tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
|
||
model = ModelForTokenClassificationWithCRF.from_pretrained(cache_path)
|
||
pipeline1 = NamedEntityRecognitionPipeline(
|
||
model, preprocessor=tokenizer)
|
||
pipeline2 = pipeline(
|
||
Tasks.named_entity_recognition,
|
||
model=model,
|
||
preprocessor=tokenizer)
|
||
print(f'sentence: {self.sentence}\n'
|
||
f'pipeline1:{pipeline1(input=self.sentence)}')
|
||
print()
|
||
print(f'pipeline2: {pipeline2(input=self.sentence)}')
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_lcrf_by_direct_model_download(self):
|
||
cache_path = snapshot_download(self.lcrf_model_id)
|
||
tokenizer = TokenClassificationTransformersPreprocessor(cache_path)
|
||
model = LSTMForTokenClassificationWithCRF.from_pretrained(cache_path)
|
||
pipeline1 = NamedEntityRecognitionPipeline(
|
||
model, preprocessor=tokenizer)
|
||
pipeline2 = pipeline(
|
||
Tasks.named_entity_recognition,
|
||
model=model,
|
||
preprocessor=tokenizer)
|
||
print(f'sentence: {self.sentence}\n'
|
||
f'pipeline1:{pipeline1(input=self.sentence)}')
|
||
print()
|
||
print(f'pipeline2: {pipeline2(input=self.sentence)}')
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_tcrf_with_model_from_modelhub(self):
|
||
model = Model.from_pretrained(self.tcrf_model_id)
|
||
tokenizer = TokenClassificationTransformersPreprocessor(
|
||
model.model_dir)
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition,
|
||
model=model,
|
||
preprocessor=tokenizer)
|
||
print(pipeline_ins(input=self.sentence))
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_addrst_with_model_from_modelhub(self):
|
||
model = Model.from_pretrained(
|
||
'damo/nlp_structbert_address-parsing_chinese_base')
|
||
tokenizer = TokenClassificationTransformersPreprocessor(
|
||
model.model_dir)
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition,
|
||
model=model,
|
||
preprocessor=tokenizer)
|
||
print(pipeline_ins(input=self.addr))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_addrst_with_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.addr_model_id)
|
||
print(pipeline_ins(input=self.addr))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_addrst_with_model_name_batch(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.addr_model_id)
|
||
print(
|
||
pipeline_ins(
|
||
input=[self.addr, self.addr1, self.addr2], batch_size=2))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_addrst_with_model_name_batch_iter(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition,
|
||
model=self.addr_model_id,
|
||
padding=False)
|
||
print(pipeline_ins(input=[self.addr, self.addr1, self.addr2]))
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_lcrf_with_model_from_modelhub(self):
|
||
model = Model.from_pretrained(self.lcrf_model_id)
|
||
tokenizer = TokenClassificationTransformersPreprocessor(
|
||
model.model_dir)
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition,
|
||
model=model,
|
||
preprocessor=tokenizer)
|
||
print(pipeline_ins(input=self.sentence))
|
||
|
||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
||
def test_run_tcrf_with_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.tcrf_model_id)
|
||
print(pipeline_ins(input=self.sentence))
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_lcrf_with_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.lcrf_model_id)
|
||
print(pipeline_ins(input=self.sentence))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_lcrf_with_chinese_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.chinese_model_id)
|
||
print(pipeline_ins(input=self.sentence_zh))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_lcrf_with_chinese_model_name_batch_iter(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition,
|
||
model=self.chinese_model_id,
|
||
padding=False)
|
||
print(
|
||
pipeline_ins(input=[
|
||
self.sentence_zh, self.sentence_zh[:20], self.sentence_zh[10:]
|
||
]))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_lcrf_with_chinese_model_name_batch(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.chinese_model_id)
|
||
print(
|
||
pipeline_ins(
|
||
input=[
|
||
self.sentence_zh, self.sentence_zh[:20],
|
||
self.sentence_zh[10:]
|
||
],
|
||
batch_size=2))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_lstm_with_chinese_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.lstm_model_id)
|
||
print(pipeline_ins(input=self.sentence_zh))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_lstm_with_chinese_model_name_batch_iter(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition,
|
||
model=self.lstm_model_id,
|
||
padding=False)
|
||
print(
|
||
pipeline_ins(input=[
|
||
self.sentence_zh, self.sentence_zh[:20], self.sentence_zh[10:]
|
||
]))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_lstm_with_chinese_model_name_batch(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.lstm_model_id)
|
||
print(
|
||
pipeline_ins(
|
||
input=[
|
||
self.sentence_zh, self.sentence_zh[:20],
|
||
self.sentence_zh[10:]
|
||
],
|
||
batch_size=2))
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_english_with_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.english_model_id)
|
||
print(pipeline_ins(input=self.sentence_en))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_english_with_model_name_batch(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.english_model_id)
|
||
print(
|
||
pipeline_ins(
|
||
input=[self.ecom, self.sentence_zh, self.sentence],
|
||
batch_size=2))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_english_with_model_name_batch_iter(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition,
|
||
model=self.english_model_id,
|
||
padding=False)
|
||
print(pipeline_ins(input=[self.ecom, self.sentence_zh, self.sentence]))
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_with_default_model(self):
|
||
pipeline_ins = pipeline(task=Tasks.named_entity_recognition)
|
||
print(pipeline_ins(input=self.sentence))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_long_chinese_with_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.chinese_model_id)
|
||
print(
|
||
pipeline_ins(
|
||
input=self.sentence + '. ' * 1000,
|
||
split_max_length=300)) # longer than 512
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_long_chinese_with_model_name_batch(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.named_entity_recognition, model=self.chinese_model_id)
|
||
print(
|
||
pipeline_ins(
|
||
input=[self.sentence + '. ' * 1000] * 2,
|
||
batch_size=2,
|
||
split_max_length=300)) # longer than 512
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_with_all_modelcards(self):
|
||
for item in self.all_modelcards_info:
|
||
model_id = item['model_id']
|
||
sentence = self.language_examples[item['language']]
|
||
with self.subTest(model_id=model_id):
|
||
pipeline_ins = pipeline(Tasks.named_entity_recognition,
|
||
model_id)
|
||
print(pipeline_ins(input=sentence))
|
||
|
||
|
||
if __name__ == '__main__':
|
||
unittest.main()
|