Files
modelscope/tests/pipelines/test_multilingual_word_segmentation.py

70 lines
3.0 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import ModelForTokenClassificationWithCRF
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import WordSegmentationThaiPipeline
from modelscope.preprocessors import WordSegmentationPreprocessorThai
from modelscope.utils.constant import Tasks
from modelscope.utils.regress_test_utils import MsRegressTool
from modelscope.utils.test_utils import test_level
class WordSegmentationTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.word_segmentation
self.model_id = 'damo/nlp_xlmr_word-segmentation_thai'
sentence = 'รถคันเก่าก็ยังเก็บเอาไว้ยังไม่ได้ขาย'
regress_tool = MsRegressTool(baseline=False)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_by_direct_model_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = WordSegmentationPreprocessorThai(cache_path)
model = ModelForTokenClassificationWithCRF.from_pretrained(cache_path)
pipeline1 = WordSegmentationThaiPipeline(model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.word_segmentation, model=model, preprocessor=tokenizer)
print(f'sentence: {self.sentence}\n'
f'pipeline1:{pipeline1(input=self.sentence)}')
print(f'pipeline2: {pipeline2(input=self.sentence)}')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = WordSegmentationPreprocessorThai(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.word_segmentation, model=model, preprocessor=tokenizer)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.word_segmentation, model=self.model_id)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name_batch(self):
pipeline_ins = pipeline(
task=Tasks.word_segmentation, model=self.model_id)
print(
pipeline_ins(
input=[self.sentence, self.sentence[:10], self.sentence[6:]],
batch_size=2))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name_batch_iter(self):
pipeline_ins = pipeline(
task=Tasks.word_segmentation, model=self.model_id, padding=False)
print(
pipeline_ins(
input=[self.sentence, self.sentence[:10], self.sentence[6:]]))
if __name__ == '__main__':
unittest.main()