Files
modelscope/tests/pipelines/test_movie_scene_segmentation.py

128 lines
4.4 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import tempfile
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.pipelines import pipeline
from modelscope.trainers import build_trainer
from modelscope.utils.config import Config, ConfigDict
from modelscope.utils.constant import ModelFile, Tasks
from modelscope.utils.test_utils import test_level
class MovieSceneSegmentationTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.movie_scene_segmentation
self.model_id = 'damo/cv_resnet50-bert_video-scene-segmentation_movienet'
cache_path = snapshot_download(self.model_id)
config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
self.cfg = Config.from_file(config_path)
self.tmp_dir = tempfile.TemporaryDirectory().name
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_movie_scene_segmentation(self):
input_location = 'data/test/videos/movie_scene_segmentation_test_video.mp4'
movie_scene_segmentation_pipeline = pipeline(
Tasks.movie_scene_segmentation, model=self.model_id)
result = movie_scene_segmentation_pipeline(input_location)
if result:
print(result)
else:
raise ValueError('process error')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_movie_scene_segmentation_finetune(self):
train_data_cfg = ConfigDict(
name='movie_scene_seg_toydata',
split='train',
cfg=self.cfg.preprocessor,
test_mode=False)
train_dataset = MsDataset.load(
dataset_name=train_data_cfg.name,
split=train_data_cfg.split,
cfg=train_data_cfg.cfg,
test_mode=train_data_cfg.test_mode)
test_data_cfg = ConfigDict(
name='movie_scene_seg_toydata',
split='test',
cfg=self.cfg.preprocessor,
test_mode=True)
test_dataset = MsDataset.load(
dataset_name=test_data_cfg.name,
split=test_data_cfg.split,
cfg=test_data_cfg.cfg,
test_mode=test_data_cfg.test_mode)
kwargs = dict(
model=self.model_id,
train_dataset=train_dataset,
eval_dataset=test_dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(
name=Trainers.movie_scene_segmentation, default_args=kwargs)
trainer.train()
results_files = os.listdir(trainer.work_dir)
print(results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_movie_scene_segmentation_finetune_with_custom_dataset(self):
data_cfg = ConfigDict(
dataset_name='movie_scene_seg_toydata',
namespace='modelscope',
train_split='train',
test_split='test',
model_cfg=self.cfg)
train_dataset = MsDataset.load(
dataset_name=data_cfg.dataset_name,
namespace=data_cfg.namespace,
split=data_cfg.train_split,
custom_cfg=data_cfg.model_cfg,
test_mode=False)
test_dataset = MsDataset.load(
dataset_name=data_cfg.dataset_name,
namespace=data_cfg.namespace,
split=data_cfg.test_split,
custom_cfg=data_cfg.model_cfg,
test_mode=True)
kwargs = dict(
model=self.model_id,
train_dataset=train_dataset,
eval_dataset=test_dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(
name=Trainers.movie_scene_segmentation, default_args=kwargs)
trainer.train()
results_files = os.listdir(trainer.work_dir)
print(results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_movie_scene_segmentation_with_default_task(self):
input_location = 'data/test/videos/movie_scene_segmentation_test_video.mp4'
movie_scene_segmentation_pipeline = pipeline(
Tasks.movie_scene_segmentation)
result = movie_scene_segmentation_pipeline(input_location)
if result:
print(result)
else:
raise ValueError('process error')
if __name__ == '__main__':
unittest.main()