Files
modelscope/tests/pipelines/test_mog_face_detection.py
wenmeng.zwm a1688f5775 enhance interface standard and refactor card_detection and face detection pipeline
1. build preprocessor for pipeline automatically if preprocessor is configed in configuration.json
2. refactor scrfd_detect.py as a standard cv model code
3. refacotr card_detection_pipeline  face_detection_pipeline as standard pipeline code

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11057557
2022-12-15 14:31:50 +08:00

42 lines
1.4 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os.path as osp
import unittest
import cv2
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.cv.image_utils import draw_face_detection_no_lm_result
from modelscope.utils.test_utils import test_level
class MogFaceDetectionTest(unittest.TestCase):
def setUp(self) -> None:
self.model_id = 'damo/cv_resnet101_face-detection_cvpr22papermogface'
def show_result(self, img_path, detection_result):
img = draw_face_detection_no_lm_result(img_path, detection_result)
cv2.imwrite('result.png', img)
print(f'output written to {osp.abspath("result.png")}')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_modelhub(self):
face_detection = pipeline(Tasks.face_detection, model=self.model_id)
img_path = 'data/test/images/mog_face_detection.jpg'
result = face_detection(img_path)
self.show_result(img_path, result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_default_model(self):
face_detection = pipeline(Tasks.face_detection)
img_path = 'data/test/images/mog_face_detection.jpg'
result = face_detection(img_path)
self.show_result(img_path, result)
if __name__ == '__main__':
unittest.main()