mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-17 00:37:43 +01:00
59 lines
2.2 KiB
Python
59 lines
2.2 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
import unittest
|
|
|
|
import cv2
|
|
import PIL
|
|
|
|
from modelscope.outputs import OutputKeys
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.cv.image_utils import semantic_seg_masks_to_image
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class ImageSemanticSegmentationTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = 'image-segmentation'
|
|
self.model_id = 'damo/cv_swinL_semantic-segmentation_cocopanmerge'
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_image_semantic_segmentation_panmerge(self):
|
|
input_location = 'data/test/images/image_semantic_segmentation.jpg'
|
|
segmenter = pipeline(Tasks.image_segmentation, model=self.model_id)
|
|
result = segmenter(input_location)
|
|
|
|
draw_img = semantic_seg_masks_to_image(result[OutputKeys.MASKS])
|
|
cv2.imwrite('result.jpg', draw_img)
|
|
print('test_image_semantic_segmentation_panmerge DONE')
|
|
|
|
PIL_array = PIL.Image.open(input_location)
|
|
result = segmenter(PIL_array)
|
|
|
|
draw_img = semantic_seg_masks_to_image(result[OutputKeys.MASKS])
|
|
cv2.imwrite('result.jpg', draw_img)
|
|
print('test_image_semantic_segmentation_panmerge_from_PIL DONE')
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_image_semantic_segmentation_vitadapter(self):
|
|
model_id = 'damo/cv_vitadapter_semantic-segmentation_cocostuff164k'
|
|
input_location = 'data/test/images/image_semantic_segmentation.jpg'
|
|
segmenter = pipeline(Tasks.image_segmentation, model=model_id)
|
|
result = segmenter(input_location)
|
|
|
|
draw_img = semantic_seg_masks_to_image(result[OutputKeys.MASKS])
|
|
cv2.imwrite('result.jpg', draw_img)
|
|
print('test_image_semantic_segmentation_vitadapter DONE')
|
|
|
|
PIL_array = PIL.Image.open(input_location)
|
|
result = segmenter(PIL_array)
|
|
|
|
draw_img = semantic_seg_masks_to_image(result[OutputKeys.MASKS])
|
|
cv2.imwrite('result.jpg', draw_img)
|
|
print('test_image_semantic_segmentation_vitadapter_from_PIL DONE')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|