mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-17 00:37:43 +01:00
明确受影响的模型(damo): ONE-PEACE-4B ModuleNotFoundError: MyCustomPipeline: MyCustomModel: No module named 'one_peace',缺少依赖。 cv_resnet50_face-reconstruction 不兼容tf2 nlp_automatic_post_editing_for_translation_en2de tf2.0兼容性问题,tf1.x需要 cv_resnet18_ocr-detection-word-level_damo tf2.x兼容性问题 cv_resnet18_ocr-detection-line-level_damo tf兼容性问题 cv_resnet101_detection_fewshot-defrcn 模型限制必须detection0.3+torch1.11.0" speech_dfsmn_ans_psm_48k_causal "librosa, numpy兼容性问题 cv_mdm_motion-generation "依赖numpy版本兼容性问题: File ""/opt/conda/lib/python3.8/site-packages/smplx/body_models.py"", cv_resnet50_ocr-detection-vlpt numpy兼容性问题 cv_clip-it_video-summarization_language-guided_en tf兼容性问题 Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13744636 * numpy and pandas no version * modify compatible issue * fix numpy compatible issue * modify ci * fix lint issue * replace Image.ANTIALIAS to Image.Resampling.LANCZOS pillow compatible * skip uncompatible cases * fix numpy compatible issue, skip cases that can not compatbile numpy or tensorflow2.x * skip compatible cases * fix clip model issue * fix body 3d keypoints compatible issue
48 lines
1.7 KiB
Python
48 lines
1.7 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os.path as osp
|
|
import sys
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.outputs import OutputKeys
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.base import Pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
sys.path.append('.')
|
|
|
|
|
|
@unittest.skip('For numpy compatible trimesh numpy bool')
|
|
class HumanReconstructionTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.human_reconstruction
|
|
self.model_id = 'damo/cv_hrnet_image-human-reconstruction'
|
|
self.test_image = 'data/test/images/human_reconstruction.jpg'
|
|
|
|
def pipeline_inference(self, pipeline: Pipeline, input_location: str):
|
|
result = pipeline(input_location)
|
|
mesh = result[OutputKeys.OUTPUT]
|
|
print(
|
|
f'Output to {osp.abspath("human_reconstruction.obj")}, vertices num: {mesh["vertices"].shape}'
|
|
)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_by_direct_model_download(self):
|
|
model_dir = snapshot_download(self.model_id)
|
|
human_reconstruction = pipeline(
|
|
Tasks.human_reconstruction, model=model_dir)
|
|
print('running')
|
|
self.pipeline_inference(human_reconstruction, self.test_image)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_modelhub(self):
|
|
human_reconstruction = pipeline(
|
|
Tasks.human_reconstruction, model=self.model_id)
|
|
self.pipeline_inference(human_reconstruction, self.test_image)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|