Files
modelscope/tests/pipelines/test_human_reconstruction.py
mulin.lyh cba4e40bc1 fix numpy pandas compatible issue
明确受影响的模型(damo):  
ONE-PEACE-4B	ModuleNotFoundError: MyCustomPipeline: MyCustomModel: No module named 'one_peace',缺少依赖。
cv_resnet50_face-reconstruction	 不兼容tf2  
nlp_automatic_post_editing_for_translation_en2de	tf2.0兼容性问题,tf1.x需要  
cv_resnet18_ocr-detection-word-level_damo	tf2.x兼容性问题  
cv_resnet18_ocr-detection-line-level_damo	tf兼容性问题  
cv_resnet101_detection_fewshot-defrcn	模型限制必须detection0.3+torch1.11.0"  
speech_dfsmn_ans_psm_48k_causal	"librosa, numpy兼容性问题  
cv_mdm_motion-generation	"依赖numpy版本兼容性问题:   File ""/opt/conda/lib/python3.8/site-packages/smplx/body_models.py"",  
cv_resnet50_ocr-detection-vlpt	numpy兼容性问题  
cv_clip-it_video-summarization_language-guided_en	tf兼容性问题

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13744636
* numpy and pandas no version

* modify compatible issue

* fix numpy compatible issue

* modify ci

* fix lint issue

* replace Image.ANTIALIAS to Image.Resampling.LANCZOS pillow compatible

* skip uncompatible cases

* fix numpy compatible issue, skip cases that can not compatbile numpy or tensorflow2.x

* skip compatible cases

* fix clip model issue

* fix body 3d keypoints compatible issue
2023-08-22 23:04:31 +08:00

48 lines
1.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os.path as osp
import sys
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.pipelines.base import Pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
sys.path.append('.')
@unittest.skip('For numpy compatible trimesh numpy bool')
class HumanReconstructionTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.human_reconstruction
self.model_id = 'damo/cv_hrnet_image-human-reconstruction'
self.test_image = 'data/test/images/human_reconstruction.jpg'
def pipeline_inference(self, pipeline: Pipeline, input_location: str):
result = pipeline(input_location)
mesh = result[OutputKeys.OUTPUT]
print(
f'Output to {osp.abspath("human_reconstruction.obj")}, vertices num: {mesh["vertices"].shape}'
)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_by_direct_model_download(self):
model_dir = snapshot_download(self.model_id)
human_reconstruction = pipeline(
Tasks.human_reconstruction, model=model_dir)
print('running')
self.pipeline_inference(human_reconstruction, self.test_image)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_modelhub(self):
human_reconstruction = pipeline(
Tasks.human_reconstruction, model=self.model_id)
self.pipeline_inference(human_reconstruction, self.test_image)
if __name__ == '__main__':
unittest.main()