mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-18 01:07:44 +01:00
明确受影响的模型(damo): ONE-PEACE-4B ModuleNotFoundError: MyCustomPipeline: MyCustomModel: No module named 'one_peace',缺少依赖。 cv_resnet50_face-reconstruction 不兼容tf2 nlp_automatic_post_editing_for_translation_en2de tf2.0兼容性问题,tf1.x需要 cv_resnet18_ocr-detection-word-level_damo tf2.x兼容性问题 cv_resnet18_ocr-detection-line-level_damo tf兼容性问题 cv_resnet101_detection_fewshot-defrcn 模型限制必须detection0.3+torch1.11.0" speech_dfsmn_ans_psm_48k_causal "librosa, numpy兼容性问题 cv_mdm_motion-generation "依赖numpy版本兼容性问题: File ""/opt/conda/lib/python3.8/site-packages/smplx/body_models.py"", cv_resnet50_ocr-detection-vlpt numpy兼容性问题 cv_clip-it_video-summarization_language-guided_en tf兼容性问题 Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13744636 * numpy and pandas no version * modify compatible issue * fix numpy compatible issue * modify ci * fix lint issue * replace Image.ANTIALIAS to Image.Resampling.LANCZOS pillow compatible * skip uncompatible cases * fix numpy compatible issue, skip cases that can not compatbile numpy or tensorflow2.x * skip compatible cases * fix clip model issue * fix body 3d keypoints compatible issue
75 lines
2.9 KiB
Python
75 lines
2.9 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.models import Model
|
|
from modelscope.models.nlp import StarForTextToSql
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.nlp import ConversationalTextToSqlPipeline
|
|
from modelscope.preprocessors import ConversationalTextToSqlPreprocessor
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.nlp.space_T_en.utils import \
|
|
text2sql_tracking_and_print_results
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
@unittest.skip(
|
|
"For compatible issue, TypeError: edge_subgraph() got an unexpected keyword argument 'preserve_nodes'"
|
|
)
|
|
class ConversationalTextToSql(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.table_question_answering
|
|
self.model_id = 'damo/nlp_star_conversational-text-to-sql'
|
|
|
|
model_id = 'damo/nlp_star_conversational-text-to-sql'
|
|
test_case = {
|
|
'database_id':
|
|
'employee_hire_evaluation',
|
|
'local_db_path':
|
|
None,
|
|
'utterance': [
|
|
"I'd like to see Shop names.", 'Which of these are hiring?',
|
|
'Which shop is hiring the highest number of employees? | do you want the name of the shop ? | Yes'
|
|
]
|
|
}
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_by_direct_model_download(self):
|
|
cache_path = snapshot_download(self.model_id)
|
|
preprocessor = ConversationalTextToSqlPreprocessor(
|
|
model_dir=cache_path,
|
|
database_id=self.test_case['database_id'],
|
|
db_content=True)
|
|
model = StarForTextToSql(
|
|
model_dir=cache_path, config=preprocessor.config)
|
|
|
|
pipelines = [
|
|
ConversationalTextToSqlPipeline(
|
|
model=model, preprocessor=preprocessor),
|
|
pipeline(task=self.task, model=model, preprocessor=preprocessor)
|
|
]
|
|
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.model_id)
|
|
preprocessor = ConversationalTextToSqlPreprocessor(
|
|
model_dir=model.model_dir)
|
|
|
|
pipelines = [
|
|
ConversationalTextToSqlPipeline(
|
|
model=model, preprocessor=preprocessor),
|
|
pipeline(task=self.task, model=model, preprocessor=preprocessor)
|
|
]
|
|
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name(self):
|
|
pipelines = [pipeline(task=self.task, model=self.model_id)]
|
|
text2sql_tracking_and_print_results(self.test_case, pipelines)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|