Files
modelscope/tests/pipelines/test_conversational_text_to_sql.py
mulin.lyh cba4e40bc1 fix numpy pandas compatible issue
明确受影响的模型(damo):  
ONE-PEACE-4B	ModuleNotFoundError: MyCustomPipeline: MyCustomModel: No module named 'one_peace',缺少依赖。
cv_resnet50_face-reconstruction	 不兼容tf2  
nlp_automatic_post_editing_for_translation_en2de	tf2.0兼容性问题,tf1.x需要  
cv_resnet18_ocr-detection-word-level_damo	tf2.x兼容性问题  
cv_resnet18_ocr-detection-line-level_damo	tf兼容性问题  
cv_resnet101_detection_fewshot-defrcn	模型限制必须detection0.3+torch1.11.0"  
speech_dfsmn_ans_psm_48k_causal	"librosa, numpy兼容性问题  
cv_mdm_motion-generation	"依赖numpy版本兼容性问题:   File ""/opt/conda/lib/python3.8/site-packages/smplx/body_models.py"",  
cv_resnet50_ocr-detection-vlpt	numpy兼容性问题  
cv_clip-it_video-summarization_language-guided_en	tf兼容性问题

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13744636
* numpy and pandas no version

* modify compatible issue

* fix numpy compatible issue

* modify ci

* fix lint issue

* replace Image.ANTIALIAS to Image.Resampling.LANCZOS pillow compatible

* skip uncompatible cases

* fix numpy compatible issue, skip cases that can not compatbile numpy or tensorflow2.x

* skip compatible cases

* fix clip model issue

* fix body 3d keypoints compatible issue
2023-08-22 23:04:31 +08:00

75 lines
2.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import StarForTextToSql
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import ConversationalTextToSqlPipeline
from modelscope.preprocessors import ConversationalTextToSqlPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.nlp.space_T_en.utils import \
text2sql_tracking_and_print_results
from modelscope.utils.test_utils import test_level
@unittest.skip(
"For compatible issue, TypeError: edge_subgraph() got an unexpected keyword argument 'preserve_nodes'"
)
class ConversationalTextToSql(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.table_question_answering
self.model_id = 'damo/nlp_star_conversational-text-to-sql'
model_id = 'damo/nlp_star_conversational-text-to-sql'
test_case = {
'database_id':
'employee_hire_evaluation',
'local_db_path':
None,
'utterance': [
"I'd like to see Shop names.", 'Which of these are hiring?',
'Which shop is hiring the highest number of employees? | do you want the name of the shop ? | Yes'
]
}
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_by_direct_model_download(self):
cache_path = snapshot_download(self.model_id)
preprocessor = ConversationalTextToSqlPreprocessor(
model_dir=cache_path,
database_id=self.test_case['database_id'],
db_content=True)
model = StarForTextToSql(
model_dir=cache_path, config=preprocessor.config)
pipelines = [
ConversationalTextToSqlPipeline(
model=model, preprocessor=preprocessor),
pipeline(task=self.task, model=model, preprocessor=preprocessor)
]
text2sql_tracking_and_print_results(self.test_case, pipelines)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
preprocessor = ConversationalTextToSqlPreprocessor(
model_dir=model.model_dir)
pipelines = [
ConversationalTextToSqlPipeline(
model=model, preprocessor=preprocessor),
pipeline(task=self.task, model=model, preprocessor=preprocessor)
]
text2sql_tracking_and_print_results(self.test_case, pipelines)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipelines = [pipeline(task=self.task, model=self.model_id)]
text2sql_tracking_and_print_results(self.test_case, pipelines)
if __name__ == '__main__':
unittest.main()