Files
modelscope/tests/models/test_base_torch.py

101 lines
3.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from modelscope.models.base import TorchModel
from modelscope.preprocessors import Preprocessor
from modelscope.utils.regress_test_utils import (compare_arguments_nested,
numpify_tensor_nested)
class TorchBaseTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
def test_custom_model(self):
class MyTorchModel(TorchModel):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, input):
x = F.relu(self.conv1(input))
return F.relu(self.conv2(x))
model = MyTorchModel()
model.train()
model.eval()
out = model.forward(torch.rand(1, 1, 10, 10))
self.assertEqual((1, 20, 2, 2), out.shape)
def test_custom_model_with_postprocess(self):
add_bias = 200
class MyTorchModel(TorchModel):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, input):
x = F.relu(self.conv1(input))
return F.relu(self.conv2(x))
def postprocess(self, x):
return x + add_bias
model = MyTorchModel()
model.train()
model.eval()
out = model(torch.rand(1, 1, 10, 10))
self.assertEqual((1, 20, 2, 2), out.shape)
self.assertTrue(np.all(out.detach().numpy() > (add_bias - 10)))
def test_save_pretrained(self):
preprocessor = Preprocessor.from_pretrained(
'damo/nlp_structbert_sentence-similarity_chinese-tiny')
model = TorchModel.from_pretrained(
'damo/nlp_structbert_sentence-similarity_chinese-tiny')
model.eval()
with torch.no_grad():
res1 = numpify_tensor_nested(
model(**preprocessor(('test1', 'test2'))))
save_path = os.path.join(self.tmp_dir, 'test_save_pretrained')
model.save_pretrained(
save_path, save_checkpoint_names='pytorch_model.bin')
self.assertTrue(
os.path.isfile(os.path.join(save_path, 'pytorch_model.bin')))
self.assertTrue(
os.path.isfile(os.path.join(save_path, 'configuration.json')))
self.assertTrue(os.path.isfile(os.path.join(save_path, 'vocab.txt')))
model = TorchModel.from_pretrained(save_path)
model.eval()
with torch.no_grad():
res2 = numpify_tensor_nested(
model(**preprocessor(('test1', 'test2'))))
self.assertTrue(compare_arguments_nested('', res1, res2))
if __name__ == '__main__':
unittest.main()