Files
modelscope/tests/trainers/test_stable_diffusion_trainer.py
xingjun.wxj 0db0ec5586 Merge code from github
1. Merge(add) daily regression from github PR (daily_regression.yaml)
2. Add lora stable diffusion from github PR
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/13010802
* fix: device arg not work, rename device to ngpu (#272)

* Correcting the lora stable diffusion example script (#300)

* add vad model and punc model in README.md 

add vad model and punc model

* Merge pull request #302 from modelscope/langgz-patch-1

add vad model and punc model in README.md

* add 1.6

* modify ignore

* Merge pull request #307 from modelscope/dev_rs_16

Merge release 1.6

* undo datetime to 2099

* Merge pull request #311 from modelscope/fix_master_version

undo datetime to 2099

* add daily regression workflow

* modify workflow name

* fix cron format issue

* lora trainer

* Merge pull request #315 from liuyhwangyh/add_regression_workflow

add daily regression workflow
2023-06-21 10:22:06 +08:00

90 lines
2.9 KiB
Python

# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
import os
import shutil
import tempfile
import unittest
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.constant import DownloadMode
from modelscope.utils.test_utils import test_level
class TestStableDiffusionTrainer(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.train_dataset = MsDataset.load(
'buptwq/lora-stable-diffusion-finetune',
split='train',
download_mode=DownloadMode.FORCE_REDOWNLOAD)
self.eval_dataset = MsDataset.load(
'buptwq/lora-stable-diffusion-finetune',
split='validation',
download_mode=DownloadMode.FORCE_REDOWNLOAD)
self.max_epochs = 5
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_stable_diffusion_train(self):
model_id = 'AI-ModelScope/stable-diffusion-v1-5'
model_revision = 'v1.0.7'
def cfg_modify_fn(cfg):
cfg.train.max_epochs = self.max_epochs
cfg.train.lr_scheduler = {
'type': 'LambdaLR',
'lr_lambda': lambda _: 1,
'last_epoch': -1
}
cfg.train.optimizer.lr = 1e-4
return cfg
kwargs = dict(
model=model_id,
model_revision=model_revision,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(
name=Trainers.stable_diffusion, default_args=kwargs)
trainer.train()
result = trainer.evaluate()
print(f'Stable-diffusion train output: {result}.')
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_stable_diffusion_eval(self):
model_id = 'AI-ModelScope/stable-diffusion-v1-5'
model_revision = 'v1.0.7'
kwargs = dict(
model=model_id,
model_revision=model_revision,
work_dir=self.tmp_dir,
train_dataset=None,
eval_dataset=self.eval_dataset)
trainer = build_trainer(
name=Trainers.stable_diffusion, default_args=kwargs)
result = trainer.evaluate()
print(f'Stable-diffusion eval output: {result}.')
if __name__ == '__main__':
unittest.main()