Files
modelscope/tests/trainers/test_image_denoise_trainer.py
xingjun.wxj e02a260c93 Refactor the task_datasets module
Refactor the task_datasets module:

1. Add new module modelscope.msdatasets.dataset_cls.custom_datasets.
2. Add new function: modelscope.msdatasets.ms_dataset.MsDataset.to_custom_dataset().
2. Add calling to_custom_dataset() func in MsDataset.load() to adapt new custom_datasets module.
3. Refactor the pipeline for loading custom dataset: 
	1) Only use MsDataset.load() function to load the custom datasets.
	2) Combine MsDataset.load() with class EpochBasedTrainer.
4. Add new entry func for building datasets in EpochBasedTrainer: see modelscope.trainers.trainer.EpochBasedTrainer.build_dataset()
5. Add new func to build the custom dataset from model configuration, see: modelscope.trainers.trainer.EpochBasedTrainer.build_dataset_from_cfg()
6. Add new registry function for building custom datasets, see: modelscope.msdatasets.dataset_cls.custom_datasets.builder.build_custom_dataset()
7. Refine the class SiameseUIETrainer to adapt the new custom_datasets module.
8. Add class TorchCustomDataset as a superclass for custom datasets classes.
9. To move modules/classes/functions:
	1) Move module msdatasets.audio to custom_datasets
	2) Move module msdatasets.cv to custom_datasets
	3) Move module bad_image_detecting to custom_datasets
	4) Move module damoyolo to custom_datasets
	5) Move module face_2d_keypoints to custom_datasets
	6) Move module hand_2d_keypoints to custom_datasets
	7) Move module human_wholebody_keypoint to custom_datasets
	8) Move module image_classification to custom_datasets
	9) Move module image_inpainting to custom_datasets
	10) Move module image_portrait_enhancement to custom_datasets
	11) Move module image_quality_assessment_degradation to custom_datasets
	12) Move module image_quality_assmessment_mos to custom_datasets
	13) Move class LanguageGuidedVideoSummarizationDataset to custom_datasets
	14) Move class MGeoRankingDataset to custom_datasets
	15) Move module movie_scene_segmentation custom_datasets
	16) Move module object_detection to custom_datasets
	17) Move module referring_video_object_segmentation to custom_datasets
	18) Move module sidd_image_denoising to custom_datasets
	19) Move module video_frame_interpolation to custom_datasets
	20) Move module video_stabilization to custom_datasets
	21) Move module video_super_resolution to custom_datasets
	22) Move class GoproImageDeblurringDataset to custom_datasets
	23) Move class EasyCVBaseDataset to custom_datasets
	24) Move class ImageInstanceSegmentationCocoDataset to custom_datasets
	25) Move class RedsImageDeblurringDataset to custom_datasets
	26) Move class TextRankingDataset to custom_datasets
	27) Move class VecoDataset to custom_datasets
	28) Move class VideoSummarizationDataset to custom_datasets
10. To delete modules/functions/classes:
	1) Del module task_datasets
	2) Del to_task_dataset() in EpochBasedTrainer
	3) Del build_dataset() in EpochBasedTrainer and renew a same name function.
11. Rename class Datasets to CustomDatasets in metainfo.py

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11872747
2023-03-10 09:03:32 +08:00

88 lines
3.3 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models.cv.image_denoise import NAFNetForImageDenoise
from modelscope.msdatasets import MsDataset
from modelscope.msdatasets.dataset_cls.custom_datasets.sidd_image_denoising import \
SiddImageDenoisingDataset
from modelscope.trainers import build_trainer
from modelscope.utils.config import Config
from modelscope.utils.constant import DownloadMode, ModelFile
from modelscope.utils.logger import get_logger
from modelscope.utils.test_utils import test_level
logger = get_logger()
class ImageDenoiseTrainerTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
self.model_id = 'damo/cv_nafnet_image-denoise_sidd'
self.cache_path = snapshot_download(self.model_id)
self.config = Config.from_file(
os.path.join(self.cache_path, ModelFile.CONFIGURATION))
dataset_train = MsDataset.load(
'SIDD',
namespace='huizheng',
subset_name='default',
split='test',
download_mode=DownloadMode.FORCE_REDOWNLOAD)._hf_ds
dataset_val = MsDataset.load(
'SIDD',
namespace='huizheng',
subset_name='default',
split='test',
download_mode=DownloadMode.FORCE_REDOWNLOAD)._hf_ds
self.dataset_train = SiddImageDenoisingDataset(
dataset_train, self.config.dataset, is_train=True)
self.dataset_val = SiddImageDenoisingDataset(
dataset_val, self.config.dataset, is_train=False)
def tearDown(self):
shutil.rmtree(self.tmp_dir, ignore_errors=True)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer(self):
kwargs = dict(
model=self.model_id,
train_dataset=self.dataset_train,
eval_dataset=self.dataset_val,
work_dir=self.tmp_dir)
trainer = build_trainer(default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(1):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_trainer_with_model_and_args(self):
model = NAFNetForImageDenoise.from_pretrained(self.cache_path)
kwargs = dict(
cfg_file=os.path.join(self.cache_path, ModelFile.CONFIGURATION),
model=model,
train_dataset=self.dataset_train,
eval_dataset=self.dataset_val,
max_epochs=1,
work_dir=self.tmp_dir)
trainer = build_trainer(default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(1):
self.assertIn(f'epoch_{i+1}.pth', results_files)
if __name__ == '__main__':
unittest.main()