Files
modelscope/tests/trainers/hooks/test_evaluation_hook.py
yuze.zyz 4dca4773db Support csanmt exporting and refactor some code
1. Support csanmt exporting to savedmodel format
2. Create a new base class for text-ranking preprocessors, and move some parameters of mgeo_ranking_preprocessor to init method
3. Avoid Model & Preprocessor classes coupled with pytorch
4. Regression test supports comparing only model output
5. Support zero-shot exporting to onnx and torchscript

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11522461
2023-02-10 05:15:04 +00:00

118 lines
3.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import json
import numpy as np
import torch
from torch import nn
from modelscope.metainfo import Trainers
from modelscope.metrics.builder import METRICS, MetricKeys
from modelscope.models.base import TorchModel
from modelscope.trainers import build_trainer
from modelscope.utils.constant import ModelFile
from modelscope.utils.registry import default_group
from modelscope.utils.test_utils import create_dummy_test_dataset
def create_dummy_metric():
@METRICS.register_module(
group_key=default_group, module_name='DummyMetric', force=True)
class DummyMetric:
def add(*args, **kwargs):
pass
def evaluate(self):
return {MetricKeys.ACCURACY: 0.5}
dummy_dataset = create_dummy_test_dataset(
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
class DummyModel(TorchModel):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 4)
self.bn = nn.BatchNorm1d(4)
def forward(self, feat, labels):
x = self.linear(feat)
x = self.bn(x)
loss = torch.sum(x)
return dict(logits=x, loss=loss)
class EvaluationHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
create_dummy_metric()
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
def test_evaluation_hook(self):
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
},
'optimizer': {
'type': 'SGD',
'lr': 0.01,
},
'lr_scheduler': {
'type': 'StepLR',
'step_size': 2,
},
'hooks': [{
'type': 'EvaluationHook',
'interval': 1,
}]
},
'evaluation': {
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1,
'shuffle': False
},
'metrics': ['DummyMetric']
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=DummyModel(),
data_collator=None,
train_dataset=dummy_dataset,
eval_dataset=dummy_dataset,
max_epochs=1)
trainer = build_trainer(trainer_name, kwargs)
trainer.train()
self.assertDictEqual(trainer.metric_values, {'accuracy': 0.5})
if __name__ == '__main__':
unittest.main()