Files
modelscope/tests/trainers/test_finetune_mplug.py
2022-12-04 15:27:50 +08:00

149 lines
5.8 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.models.multi_modal import MPlugForAllTasks
from modelscope.msdatasets import MsDataset
from modelscope.trainers import EpochBasedTrainer, build_trainer
from modelscope.utils.constant import ModelFile, Tasks
from modelscope.utils.test_utils import test_level
class TestFinetuneMPlug(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
datadict = MsDataset.load('coco_captions_small_slice')
self.train_dataset = MsDataset(
datadict['train'].remap_columns({
'image:FILE': 'image',
'answer:Value': 'answer'
}).map(lambda _: {'question': 'what the picture describes?'}))
self.test_dataset = MsDataset(
datadict['test'].remap_columns({
'image:FILE': 'image',
'answer:Value': 'answer'
}).map(lambda _: {'question': 'what the picture describes?'}))
self.max_epochs = 2
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer_with_caption(self):
kwargs = dict(
model='damo/mplug_backbone_base_en',
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir,
task=Tasks.image_captioning)
trainer: EpochBasedTrainer = build_trainer(
name=Trainers.mplug, default_args=kwargs)
trainer.train()
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_caption_with_model_and_args(self):
cache_path = snapshot_download('damo/mplug_backbone_base_en')
model = MPlugForAllTasks.from_pretrained(
cache_path, task=Tasks.image_captioning)
kwargs = dict(
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
model=model,
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir)
trainer: EpochBasedTrainer = build_trainer(
name=Trainers.mplug, default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer_with_vqa(self):
kwargs = dict(
model='damo/mplug_backbone_base_en',
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir,
task=Tasks.visual_question_answering)
trainer: EpochBasedTrainer = build_trainer(
name=Trainers.mplug, default_args=kwargs)
trainer.train()
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_vqa_with_model_and_args(self):
cache_path = snapshot_download(
'damo/mplug_visual-question-answering_coco_large_en')
model = MPlugForAllTasks.from_pretrained(
cache_path, task=Tasks.visual_question_answering)
kwargs = dict(
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
model=model,
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir)
trainer: EpochBasedTrainer = build_trainer(
name=Trainers.mplug, default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer_with_retrieval(self):
kwargs = dict(
model='damo/mplug_backbone_base_en',
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir,
task=Tasks.image_text_retrieval)
trainer: EpochBasedTrainer = build_trainer(
name=Trainers.mplug, default_args=kwargs)
trainer.train()
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_retrieval_with_model_and_args(self):
cache_path = snapshot_download('damo/mplug_backbone_base_en')
model = MPlugForAllTasks.from_pretrained(
cache_path, task=Tasks.image_text_retrieval)
kwargs = dict(
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
model=model,
train_dataset=self.train_dataset,
eval_dataset=self.test_dataset,
max_epochs=self.max_epochs,
work_dir=self.tmp_dir)
trainer: EpochBasedTrainer = build_trainer(
name=Trainers.mplug, default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
if __name__ == '__main__':
unittest.main()