mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 04:29:22 +01:00
Add pre-trained models for mplug finetuning.
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10963691
149 lines
5.8 KiB
Python
149 lines
5.8 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.models.multi_modal import MPlugForAllTasks
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import EpochBasedTrainer, build_trainer
|
|
from modelscope.utils.constant import ModelFile, Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestFinetuneMPlug(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
datadict = MsDataset.load('coco_captions_small_slice')
|
|
self.train_dataset = MsDataset(
|
|
datadict['train'].remap_columns({
|
|
'image:FILE': 'image',
|
|
'answer:Value': 'answer'
|
|
}).map(lambda _: {'question': 'what the picture describes?'}))
|
|
self.test_dataset = MsDataset(
|
|
datadict['test'].remap_columns({
|
|
'image:FILE': 'image',
|
|
'answer:Value': 'answer'
|
|
}).map(lambda _: {'question': 'what the picture describes?'}))
|
|
self.max_epochs = 2
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_trainer_with_caption(self):
|
|
kwargs = dict(
|
|
model='damo/mplug_backbone_base_en',
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.test_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir,
|
|
task=Tasks.image_captioning)
|
|
|
|
trainer: EpochBasedTrainer = build_trainer(
|
|
name=Trainers.mplug, default_args=kwargs)
|
|
trainer.train()
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_trainer_with_caption_with_model_and_args(self):
|
|
cache_path = snapshot_download('damo/mplug_backbone_base_en')
|
|
model = MPlugForAllTasks.from_pretrained(
|
|
cache_path, task=Tasks.image_captioning)
|
|
kwargs = dict(
|
|
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
|
|
model=model,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.test_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer: EpochBasedTrainer = build_trainer(
|
|
name=Trainers.mplug, default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_trainer_with_vqa(self):
|
|
kwargs = dict(
|
|
model='damo/mplug_backbone_base_en',
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.test_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir,
|
|
task=Tasks.visual_question_answering)
|
|
|
|
trainer: EpochBasedTrainer = build_trainer(
|
|
name=Trainers.mplug, default_args=kwargs)
|
|
trainer.train()
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_trainer_with_vqa_with_model_and_args(self):
|
|
cache_path = snapshot_download(
|
|
'damo/mplug_visual-question-answering_coco_large_en')
|
|
model = MPlugForAllTasks.from_pretrained(
|
|
cache_path, task=Tasks.visual_question_answering)
|
|
kwargs = dict(
|
|
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
|
|
model=model,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.test_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer: EpochBasedTrainer = build_trainer(
|
|
name=Trainers.mplug, default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_trainer_with_retrieval(self):
|
|
kwargs = dict(
|
|
model='damo/mplug_backbone_base_en',
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.test_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir,
|
|
task=Tasks.image_text_retrieval)
|
|
|
|
trainer: EpochBasedTrainer = build_trainer(
|
|
name=Trainers.mplug, default_args=kwargs)
|
|
trainer.train()
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_trainer_with_retrieval_with_model_and_args(self):
|
|
cache_path = snapshot_download('damo/mplug_backbone_base_en')
|
|
model = MPlugForAllTasks.from_pretrained(
|
|
cache_path, task=Tasks.image_text_retrieval)
|
|
kwargs = dict(
|
|
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
|
|
model=model,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.test_dataset,
|
|
max_epochs=self.max_epochs,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer: EpochBasedTrainer = build_trainer(
|
|
name=Trainers.mplug, default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|