mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 12:39:25 +01:00
151 lines
4.9 KiB
Python
151 lines
4.9 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.test_utils import DistributedTestCase, test_level
|
|
|
|
|
|
class TestFinetuneTextGeneration(DistributedTestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skip(
|
|
'skip since the test requires multiple GPU and takes a long time to run'
|
|
)
|
|
def test_finetune_dureader(self):
|
|
# DuReader_robust-QG is an example data set,
|
|
# users can also use their own data set for training
|
|
|
|
dataset_dict = MsDataset.load('DuReader_robust-QG')
|
|
|
|
train_dataset = dataset_dict['train'].remap_columns({'text1': 'src_txt', 'text2': 'tgt_txt'}) \
|
|
.map(lambda example: {'src_txt': example['src_txt'].replace('[SEP]', '<sep>') + '\n'})
|
|
eval_dataset = dataset_dict['validation'].remap_columns({'text1': 'src_txt', 'text2': 'tgt_txt'}) \
|
|
.map(lambda example: {'src_txt': example['src_txt'].replace('[SEP]', '<sep>') + '\n'})
|
|
|
|
max_epochs = 10
|
|
|
|
tmp_dir = './gpt3_dureader'
|
|
|
|
num_warmup_steps = 200
|
|
|
|
def noam_lambda(current_step: int):
|
|
current_step += 1
|
|
return min(current_step**(-0.5),
|
|
current_step * num_warmup_steps**(-1.5))
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.lr_scheduler = {
|
|
'type': 'LambdaLR',
|
|
'lr_lambda': noam_lambda,
|
|
'options': {
|
|
'by_epoch': False
|
|
}
|
|
}
|
|
cfg.train.optimizer = {'type': 'AdamW', 'lr': 1e-4}
|
|
cfg.train.dataloader = {
|
|
'batch_size_per_gpu': 16,
|
|
'workers_per_gpu': 1
|
|
}
|
|
cfg.train.hooks.append({
|
|
'type': 'EvaluationHook',
|
|
'by_epoch': True,
|
|
'interval': 1
|
|
})
|
|
cfg.preprocessor.sequence_length = 512
|
|
cfg.model.checkpoint_model_parallel_size = 1
|
|
return cfg
|
|
|
|
kwargs = dict(
|
|
model='damo/nlp_gpt3_text-generation_1.3B',
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
max_epochs=max_epochs,
|
|
work_dir=tmp_dir,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
# Construct trainer and train
|
|
trainer = build_trainer(
|
|
name=Trainers.gpt3_trainer, default_args=kwargs)
|
|
trainer.train()
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_single_finetune_portry(self):
|
|
finetune_poetry()
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_multi_finetune_portry(self):
|
|
self.start(
|
|
finetune_poetry, num_gpus=4, work_dir=self.tmp_dir, dp_tp=True)
|
|
|
|
# TODO: add gpt3 trainer predict unittest
|
|
|
|
|
|
def finetune_poetry(dp_tp=False):
|
|
dataset_dict = MsDataset.load('chinese-poetry-collection')
|
|
train_dataset = dataset_dict['train'].remap_columns({'text1': 'src_txt'})
|
|
eval_dataset = dataset_dict['test'].remap_columns({'text1': 'src_txt'})
|
|
max_epochs = 2
|
|
tmp_dir = './gpt3_poetry'
|
|
|
|
num_warmup_steps = 100
|
|
|
|
def noam_lambda(current_step: int):
|
|
current_step += 1
|
|
return min(current_step**(-0.5),
|
|
current_step * num_warmup_steps**(-1.5))
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.lr_scheduler = {
|
|
'type': 'LambdaLR',
|
|
'lr_lambda': noam_lambda,
|
|
'options': {
|
|
'by_epoch': False
|
|
}
|
|
}
|
|
cfg.train.optimizer = {'type': 'AdamW', 'lr': 3e-4}
|
|
cfg.train.dataloader = {'batch_size_per_gpu': 2, 'workers_per_gpu': 1}
|
|
cfg.train.hooks.append({
|
|
'type': 'EvaluationHook',
|
|
'by_epoch': True,
|
|
'interval': 1
|
|
})
|
|
cfg.evaluation.dataloader = {
|
|
'batch_size_per_gpu': 8,
|
|
'workers_per_gpu': 1
|
|
}
|
|
cfg.evaluation.metrics = 'ppl'
|
|
cfg.train.train_iters_per_epoch = 10
|
|
if dp_tp:
|
|
cfg.megatron = {'world_size': 4, 'tensor_model_parallel_size': 2}
|
|
return cfg
|
|
|
|
kwargs = dict(
|
|
model='damo/nlp_gpt3_text-generation_1.3B',
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
max_epochs=max_epochs,
|
|
work_dir=tmp_dir,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
# Construct trainer and train
|
|
trainer = build_trainer(name=Trainers.gpt3_trainer, default_args=kwargs)
|
|
trainer.train()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|