mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-19 17:49:24 +01:00
Refactor the task_datasets module: 1. Add new module modelscope.msdatasets.dataset_cls.custom_datasets. 2. Add new function: modelscope.msdatasets.ms_dataset.MsDataset.to_custom_dataset(). 2. Add calling to_custom_dataset() func in MsDataset.load() to adapt new custom_datasets module. 3. Refactor the pipeline for loading custom dataset: 1) Only use MsDataset.load() function to load the custom datasets. 2) Combine MsDataset.load() with class EpochBasedTrainer. 4. Add new entry func for building datasets in EpochBasedTrainer: see modelscope.trainers.trainer.EpochBasedTrainer.build_dataset() 5. Add new func to build the custom dataset from model configuration, see: modelscope.trainers.trainer.EpochBasedTrainer.build_dataset_from_cfg() 6. Add new registry function for building custom datasets, see: modelscope.msdatasets.dataset_cls.custom_datasets.builder.build_custom_dataset() 7. Refine the class SiameseUIETrainer to adapt the new custom_datasets module. 8. Add class TorchCustomDataset as a superclass for custom datasets classes. 9. To move modules/classes/functions: 1) Move module msdatasets.audio to custom_datasets 2) Move module msdatasets.cv to custom_datasets 3) Move module bad_image_detecting to custom_datasets 4) Move module damoyolo to custom_datasets 5) Move module face_2d_keypoints to custom_datasets 6) Move module hand_2d_keypoints to custom_datasets 7) Move module human_wholebody_keypoint to custom_datasets 8) Move module image_classification to custom_datasets 9) Move module image_inpainting to custom_datasets 10) Move module image_portrait_enhancement to custom_datasets 11) Move module image_quality_assessment_degradation to custom_datasets 12) Move module image_quality_assmessment_mos to custom_datasets 13) Move class LanguageGuidedVideoSummarizationDataset to custom_datasets 14) Move class MGeoRankingDataset to custom_datasets 15) Move module movie_scene_segmentation custom_datasets 16) Move module object_detection to custom_datasets 17) Move module referring_video_object_segmentation to custom_datasets 18) Move module sidd_image_denoising to custom_datasets 19) Move module video_frame_interpolation to custom_datasets 20) Move module video_stabilization to custom_datasets 21) Move module video_super_resolution to custom_datasets 22) Move class GoproImageDeblurringDataset to custom_datasets 23) Move class EasyCVBaseDataset to custom_datasets 24) Move class ImageInstanceSegmentationCocoDataset to custom_datasets 25) Move class RedsImageDeblurringDataset to custom_datasets 26) Move class TextRankingDataset to custom_datasets 27) Move class VecoDataset to custom_datasets 28) Move class VideoSummarizationDataset to custom_datasets 10. To delete modules/functions/classes: 1) Del module task_datasets 2) Del to_task_dataset() in EpochBasedTrainer 3) Del build_dataset() in EpochBasedTrainer and renew a same name function. 11. Rename class Datasets to CustomDatasets in metainfo.py Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11872747
37 lines
1.3 KiB
Python
37 lines
1.3 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
import unittest
|
|
|
|
from modelscope.msdatasets.dataset_cls.custom_datasets.veco_dataset import \
|
|
VecoDataset
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestVecoDataset(unittest.TestCase):
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_veco_dataset_train(self):
|
|
from datasets import Dataset
|
|
d0 = Dataset.from_dict({'a': [0, 1, 2]})
|
|
d1 = Dataset.from_dict({'a': [10, 11, 12, 13, 14]})
|
|
d2 = Dataset.from_dict({'a': [21, 22, 23, 24, 25, 26, 27]})
|
|
dataset = VecoDataset([d0, d1, d2], mode='train')
|
|
self.assertEqual(len(dataset), 15)
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_veco_dataset_eval(self):
|
|
from datasets import Dataset
|
|
d0 = Dataset.from_dict({'a': [0, 1, 2]})
|
|
d1 = Dataset.from_dict({'a': [10, 11, 12, 13, 14]})
|
|
d2 = Dataset.from_dict({'a': [21, 22, 23, 24, 25, 26, 27]})
|
|
dataset = VecoDataset([d0, d1, d2], mode='eval')
|
|
self.assertEqual(len(dataset), 3)
|
|
dataset.switch_dataset(1)
|
|
self.assertEqual(len(dataset), 5)
|
|
dataset.switch_dataset(2)
|
|
self.assertEqual(len(dataset), 7)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|