Files
modelscope/tests/taskdataset/test_veco_dataset.py
xingjun.wxj e02a260c93 Refactor the task_datasets module
Refactor the task_datasets module:

1. Add new module modelscope.msdatasets.dataset_cls.custom_datasets.
2. Add new function: modelscope.msdatasets.ms_dataset.MsDataset.to_custom_dataset().
2. Add calling to_custom_dataset() func in MsDataset.load() to adapt new custom_datasets module.
3. Refactor the pipeline for loading custom dataset: 
	1) Only use MsDataset.load() function to load the custom datasets.
	2) Combine MsDataset.load() with class EpochBasedTrainer.
4. Add new entry func for building datasets in EpochBasedTrainer: see modelscope.trainers.trainer.EpochBasedTrainer.build_dataset()
5. Add new func to build the custom dataset from model configuration, see: modelscope.trainers.trainer.EpochBasedTrainer.build_dataset_from_cfg()
6. Add new registry function for building custom datasets, see: modelscope.msdatasets.dataset_cls.custom_datasets.builder.build_custom_dataset()
7. Refine the class SiameseUIETrainer to adapt the new custom_datasets module.
8. Add class TorchCustomDataset as a superclass for custom datasets classes.
9. To move modules/classes/functions:
	1) Move module msdatasets.audio to custom_datasets
	2) Move module msdatasets.cv to custom_datasets
	3) Move module bad_image_detecting to custom_datasets
	4) Move module damoyolo to custom_datasets
	5) Move module face_2d_keypoints to custom_datasets
	6) Move module hand_2d_keypoints to custom_datasets
	7) Move module human_wholebody_keypoint to custom_datasets
	8) Move module image_classification to custom_datasets
	9) Move module image_inpainting to custom_datasets
	10) Move module image_portrait_enhancement to custom_datasets
	11) Move module image_quality_assessment_degradation to custom_datasets
	12) Move module image_quality_assmessment_mos to custom_datasets
	13) Move class LanguageGuidedVideoSummarizationDataset to custom_datasets
	14) Move class MGeoRankingDataset to custom_datasets
	15) Move module movie_scene_segmentation custom_datasets
	16) Move module object_detection to custom_datasets
	17) Move module referring_video_object_segmentation to custom_datasets
	18) Move module sidd_image_denoising to custom_datasets
	19) Move module video_frame_interpolation to custom_datasets
	20) Move module video_stabilization to custom_datasets
	21) Move module video_super_resolution to custom_datasets
	22) Move class GoproImageDeblurringDataset to custom_datasets
	23) Move class EasyCVBaseDataset to custom_datasets
	24) Move class ImageInstanceSegmentationCocoDataset to custom_datasets
	25) Move class RedsImageDeblurringDataset to custom_datasets
	26) Move class TextRankingDataset to custom_datasets
	27) Move class VecoDataset to custom_datasets
	28) Move class VideoSummarizationDataset to custom_datasets
10. To delete modules/functions/classes:
	1) Del module task_datasets
	2) Del to_task_dataset() in EpochBasedTrainer
	3) Del build_dataset() in EpochBasedTrainer and renew a same name function.
11. Rename class Datasets to CustomDatasets in metainfo.py

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11872747
2023-03-10 09:03:32 +08:00

37 lines
1.3 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.msdatasets.dataset_cls.custom_datasets.veco_dataset import \
VecoDataset
from modelscope.utils.test_utils import test_level
class TestVecoDataset(unittest.TestCase):
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_veco_dataset_train(self):
from datasets import Dataset
d0 = Dataset.from_dict({'a': [0, 1, 2]})
d1 = Dataset.from_dict({'a': [10, 11, 12, 13, 14]})
d2 = Dataset.from_dict({'a': [21, 22, 23, 24, 25, 26, 27]})
dataset = VecoDataset([d0, d1, d2], mode='train')
self.assertEqual(len(dataset), 15)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_veco_dataset_eval(self):
from datasets import Dataset
d0 = Dataset.from_dict({'a': [0, 1, 2]})
d1 = Dataset.from_dict({'a': [10, 11, 12, 13, 14]})
d2 = Dataset.from_dict({'a': [21, 22, 23, 24, 25, 26, 27]})
dataset = VecoDataset([d0, d1, d2], mode='eval')
self.assertEqual(len(dataset), 3)
dataset.switch_dataset(1)
self.assertEqual(len(dataset), 5)
dataset.switch_dataset(2)
self.assertEqual(len(dataset), 7)
if __name__ == '__main__':
unittest.main()