mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-19 01:29:24 +01:00
108 lines
4.1 KiB
Python
108 lines
4.1 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from modelscope.hub.api import HubApi
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.models import Model
|
|
from modelscope.models.nlp import SbertForFaqQuestionAnswering
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.nlp import FaqQuestionAnsweringPipeline
|
|
from modelscope.preprocessors import \
|
|
FaqQuestionAnsweringTransformersPreprocessor
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class FaqQuestionAnsweringTest(unittest.TestCase):
|
|
|
|
def setUp(self) -> None:
|
|
self.task = Tasks.faq_question_answering
|
|
self.model_id = 'damo/nlp_structbert_faq-question-answering_chinese-base'
|
|
self.mgimn_model_id = 'damo/nlp_mgimn_faq-question-answering_chinese-base'
|
|
self.model_id_multilingual = 'damo/nlp_faq-question-answering_multilingual-base'
|
|
|
|
param = {
|
|
'query_set': ['如何使用优惠券', '在哪里领券', '在哪里领券'],
|
|
'support_set': [{
|
|
'text': '卖品代金券怎么用',
|
|
'label': '6527856'
|
|
}, {
|
|
'text': '怎么使用优惠券',
|
|
'label': '6527856'
|
|
}, {
|
|
'text': '这个可以一起领吗',
|
|
'label': '1000012000'
|
|
}, {
|
|
'text': '付款时送的优惠券哪里领',
|
|
'label': '1000012000'
|
|
}, {
|
|
'text': '购物等级怎么长',
|
|
'label': '13421097'
|
|
}, {
|
|
'text': '购物等级二心',
|
|
'label': '13421097'
|
|
}]
|
|
}
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_direct_file_download(self):
|
|
cache_path = snapshot_download(self.model_id)
|
|
preprocessor = FaqQuestionAnsweringTransformersPreprocessor.from_pretrained(
|
|
cache_path)
|
|
model = SbertForFaqQuestionAnswering.from_pretrained(cache_path)
|
|
pipeline_ins = FaqQuestionAnsweringPipeline(
|
|
model, preprocessor=preprocessor)
|
|
result = pipeline_ins(self.param)
|
|
print(result)
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_run_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.model_id)
|
|
preprocessor = FaqQuestionAnsweringTransformersPreprocessor(
|
|
model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.faq_question_answering,
|
|
model=model,
|
|
preprocessor=preprocessor)
|
|
result = pipeline_ins(self.param)
|
|
print(result)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_name(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.faq_question_answering, model=self.model_id)
|
|
result = pipeline_ins(self.param)
|
|
print(result)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_multilingual_model(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.faq_question_answering,
|
|
model=self.model_id_multilingual)
|
|
result = pipeline_ins(self.param)
|
|
print(result)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_default_model(self):
|
|
pipeline_ins = pipeline(task=Tasks.faq_question_answering)
|
|
print(pipeline_ins(self.param, max_seq_length=20))
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_mgimn_model(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.faq_question_answering, model=self.mgimn_model_id)
|
|
print(pipeline_ins(self.param, max_seq_length=20))
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_sentence_embedding(self):
|
|
pipeline_ins = pipeline(task=Tasks.faq_question_answering)
|
|
sentence_vec = pipeline_ins.get_sentence_embedding(
|
|
['今天星期六', '明天星期几明天星期几'])
|
|
print(np.shape(sentence_vec))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|