Files
modelscope/tests/pipelines/test_face_quality_assessment.py

48 lines
1.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os.path as osp
import unittest
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.cv.image_utils import draw_face_detection_no_lm_result
from modelscope.utils.test_utils import test_level
class FaceQualityAssessmentTest(unittest.TestCase):
def setUp(self) -> None:
self.model_id = 'damo/cv_manual_face-quality-assessment_fqa'
self.img_path = 'data/test/images/vision_efficient_tuning_test_sunflower.jpg'
self.img_path = 'data/test/images/face_recognition_1.png'
def show_result(self, img_path, detection_result):
img = draw_face_detection_no_lm_result(img_path, detection_result)
cv2.imwrite('result.png', img)
print(f'output written to {osp.abspath("result.png")}')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_modelhub(self):
face_quality_assessment = pipeline(
Tasks.face_quality_assessment, model=self.model_id)
result = face_quality_assessment(self.img_path)
if result[OutputKeys.SCORES] is None:
print('No Detected Face.')
else:
self.show_result(self.img_path, result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_default_model(self):
face_quality_assessment = pipeline(Tasks.face_quality_assessment)
result = face_quality_assessment(self.img_path)
if result[OutputKeys.SCORES] is None:
print('No Detected Face.')
else:
self.show_result(self.img_path, result)
if __name__ == '__main__':
unittest.main()