Files
modelscope/tests/pipelines/test_vision_efficient_tuning.py
xingjun.wang 48c0d2a9af add 1.6
2023-05-22 10:53:18 +08:00

119 lines
6.2 KiB
Python

# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
import unittest
from modelscope.models import Model
from modelscope.models.cv.vision_efficient_tuning.model import \
VisionEfficientTuningModel
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class VisionEfficientTuningTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.vision_efficient_tuning
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_vision_efficient_tuning_adapter_run_pipeline(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter'
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
petl_pipeline = pipeline(self.task, model_id)
result = petl_pipeline(img_path)
print(f'Vision-efficient-tuning-adapter output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_vision_efficient_tuning_adapter_load_model_from_pretrained(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_vision_efficient_tuning_lora_run_pipeline(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora'
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
petl_pipeline = pipeline(self.task, model_id)
result = petl_pipeline(img_path)
print(f'Vision-efficient-tuning-lora output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_vision_efficient_tuning_lora_load_model_from_pretrained(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_vision_efficient_tuning_prefix_run_pipeline(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prefix'
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
petl_pipeline = pipeline(self.task, model_id)
result = petl_pipeline(img_path)
print(f'Vision-efficient-tuning-prefix output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_vision_efficient_tuning_prefix_load_model_from_pretrained(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prefix'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_vision_efficient_tuning_prompt_run_pipeline(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt'
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
petl_pipeline = pipeline(self.task, model_id)
result = petl_pipeline(img_path)
print(f'Vision-efficient-tuning-prompt output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_vision_efficient_tuning_prompt_load_model_from_pretrained(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_vision_efficient_tuning_bitfit_run_pipeline(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-bitfit'
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
petl_pipeline = pipeline(self.task, model_id)
result = petl_pipeline(img_path)
print(f'Vision-efficient-tuning-bitfit output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_vision_efficient_tuning_bitfit_load_model_from_pretrained(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-bitfit'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_vision_efficient_tuning_sidetuning_run_pipeline(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-sidetuning'
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
petl_pipeline = pipeline(self.task, model_id)
result = petl_pipeline(img_path)
print(f'Vision-efficient-tuning-sidetuning output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_vision_efficient_tuning_sidetuning_load_model_from_pretrained(
self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-sidetuning'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_vision_efficient_tuning_utuning_run_pipeline(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-utuning'
img_path = 'data/test/images/vision_efficient_tuning_test_1.png'
petl_pipeline = pipeline(self.task, model_id)
result = petl_pipeline(img_path)
print(f'Vision-efficient-tuning-utuning output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_vision_efficient_tuning_utuning_load_model_from_pretrained(self):
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-utuning'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == VisionEfficientTuningModel)
if __name__ == '__main__':
unittest.main()