Files
modelscope/tests/pipelines/test_human3d_render.py
Firmament-cyou 8cdbeec3f6 Support swift model inference for llm pipeline (#880)
* Support swift model inference for llm pipeline

* fix bug

* Add 'swfit' llm_framework and fix stream bug

* For pass the unittest run action
2024-06-30 19:43:13 +08:00

58 lines
1.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import unittest
import imageio
from modelscope.models.cv.human3d_animation.utils import write_obj
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class Human3DRenderTest(unittest.TestCase):
def setUp(self) -> None:
self.model_id = 'damo/cv_3d-human-synthesis-library'
self.task = Tasks.human3d_render
def save_results(self, result, save_root):
os.makedirs(save_root, exist_ok=True)
mesh = result[OutputKeys.OUTPUT]['mesh']
write_obj(os.path.join(save_root, 'mesh.obj'), mesh)
frames_color = result[OutputKeys.OUTPUT]['frames_color']
imageio.mimwrite(
os.path.join(save_root, 'render_color.gif'),
frames_color,
duration=33)
del frames_color
frames_normals = result[OutputKeys.OUTPUT]['frames_normal']
imageio.mimwrite(
os.path.join(save_root, 'render_normals.gif'),
frames_normals,
duration=33)
del frames_normals
print(f'Output written to {os.path.abspath(save_root)}')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_modelhub(self):
human3d = pipeline(self.task, model=self.model_id)
input = {
'dataset_id': 'damo/3DHuman_synthetic_dataset',
'case_id': '000039',
'resolution': 1024,
}
output = human3d(input)
self.save_results(output, './human3d_results')
print('human3d_render.test_run_modelhub done')
if __name__ == '__main__':
unittest.main()