Files
modelscope/tests/pipelines/test_siamese_uie.py

72 lines
2.9 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
import json
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import SiameseUieModel
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import SiameseUiePipeline
from modelscope.preprocessors import SiameseUiePreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.regress_test_utils import IgnoreKeyFn, MsRegressTool
from modelscope.utils.test_utils import test_level
class ZeroShotClassificationTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.siamese_uie
self.model_id = 'damo/nlp_structbert_siamese-uie_chinese-base'
sentence = '1944年毕业于北大的名古屋铁道会长谷口清太郎等人在日本积极筹资共筹款2.7亿日元参加捐款的日本企业有69家。'
schema = {'人物': None, '地理位置': None, '组织机构': None}
regress_tool = MsRegressTool(baseline=False)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_direct_file_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = SiameseUiePreprocessor(cache_path)
model = SiameseUieModel.from_pretrained(cache_path)
pipeline1 = SiameseUiePipeline(
model, preprocessor=tokenizer, model_revision='v1.1')
pipeline2 = pipeline(
Tasks.siamese_uie,
model=model,
preprocessor=tokenizer,
model_revision='v1.1')
print(
f'sentence: {self.sentence}\n'
f'pipeline1:{pipeline1(input=self.sentence, schema=json.dumps(self.schema, ensure_ascii=False))}'
)
print(f'sentence: {self.sentence}\n'
f'pipeline2: {pipeline2(self.sentence, schema=self.schema)}')
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = SiameseUiePreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.siamese_uie,
model=model,
preprocessor=tokenizer,
model_revision='v1.1')
print(pipeline_ins(input=self.sentence, schema=self.schema))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.siamese_uie, model=self.model_id, model_revision='v1.1')
print(pipeline_ins(input=self.sentence, schema=self.schema))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.siamese_uie, model_revision='v1.1')
print(pipeline_ins(input=self.sentence, schema=self.schema))
if __name__ == '__main__':
unittest.main()