Files
modelscope/tests/pipelines/test_efficient_diffusion_tuning.py
xingjun.wxj cc3c384d5e Fix issues for downloading mplug-youku dataset
1. Optimize downloading meta-csv files for large-scale dataset like mPLUG-youku (> 1GB for meta csv mapping)
2. Add head and overall progress bar for NativeIterableDataset
3. Modify the try-catch info for oss_utils
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/12952842
2023-06-15 15:42:21 +08:00

54 lines
2.3 KiB
Python

# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
import unittest
from modelscope.models import Model
from modelscope.models.multi_modal import EfficientStableDiffusion
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class EfficientDiffusionTuningTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.efficient_diffusion_tuning
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_efficient_diffusion_tuning_lora_run_pipeline(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
inputs = {'prompt': 'pale golden rod circle with old lace background'}
edt_pipeline = pipeline(self.task, model_id)
result = edt_pipeline(inputs)
print(f'Efficient-diffusion-tuning-lora output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_efficient_diffusion_tuning_lora_load_model_from_pretrained(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == EfficientStableDiffusion)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_efficient_diffusion_tuning_control_lora_run_pipeline(self):
# TODO: to be fixed in the future
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
inputs = {
'prompt':
'pale golden rod circle with old lace background',
'cond':
'data/test/images/efficient_diffusion_tuning_sd_control_lora_source.png'
}
edt_pipeline = pipeline(self.task, model_id)
result = edt_pipeline(inputs)
print(f'Efficient-diffusion-tuning-control-lora output: {result}.')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_efficient_diffusion_tuning_control_lora_load_model_from_pretrained(
self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
model = Model.from_pretrained(model_id)
self.assertTrue(model.__class__ == EfficientStableDiffusion)
if __name__ == '__main__':
unittest.main()