# Copyright (c) Alibaba, Inc. and its affiliates. import os.path as osp import tempfile import unittest import cv2 import numpy as np from modelscope.fileio import File from modelscope.msdatasets import MsDataset from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import ModelFile, Tasks from modelscope.utils.test_utils import test_level class FaceRecognitionTest(unittest.TestCase): def setUp(self) -> None: self.recog_model_id = 'damo/cv_ir101_facerecognition_cfglint' self.det_model_id = 'damo/cv_resnet_facedetection_scrfd10gkps' @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') def test_face_compare(self): img1 = 'data/test/images/face_recognition_1.png' img2 = 'data/test/images/face_recognition_2.png' face_detection = pipeline( Tasks.face_detection, model=self.det_model_id) face_recognition = pipeline( Tasks.face_recognition, face_detection=face_detection, model=self.recog_model_id) # note that for dataset output, the inference-output is a Generator that can be iterated. emb1 = face_recognition(img1)[OutputKeys.IMG_EMBEDDING] emb2 = face_recognition(img2)[OutputKeys.IMG_EMBEDDING] sim = np.dot(emb1[0], emb2[0]) print(f'Cos similarity={sim:.3f}, img1:{img1} img2:{img2}') if __name__ == '__main__': unittest.main()