# ### Setting up experimental environment. """ pip install modelscope pip install numpy pandas matplotlib scikit-learn pip install transformers datasets conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia pip install tqdm tensorboard torchmetrics sentencepiece charset_normalizer accelerate pip install numpy -U # Resolve torchmetrics dependencies and update numpy """ from _common import * device_ids = [0, 1] select_device(device_ids) seed_everything(42) # ### Loading Model and Tokenizer BAICHUAN_TYPE = '13B' # Literal['7B', '13B'] WORK_DIR = f'runs/baichuan_{BAICHUAN_TYPE}' # if BAICHUAN_TYPE == '7B': model_dir = snapshot_download('baichuan-inc/baichuan-7B', 'v1.0.5') model, tokenizer = get_baichuan7B_model_tokenizer(model_dir) else: model_dir = snapshot_download('baichuan-inc/Baichuan-13B-Base', 'v1.0.2') model, tokenizer = get_baichuan13B_model_tokenizer(model_dir) # GRADIENT_CHECKPOINTING = True if GRADIENT_CHECKPOINTING: # baichuan13B does not implement the `get_input_embeddings` function if BAICHUAN_TYPE == '13B': def get_input_embeddings(self): return self.model.embed_tokens model.__class__.get_input_embeddings = get_input_embeddings.__get__( model) model.gradient_checkpointing_enable() model.enable_input_require_grads() # ### Preparing lora LORA_TARGET_MODULES = ['W_pack'] LORA_RANK = 8 LORA_ALPHA = 32 LORA_DROPOUT_P = 0.1 lora_config = LoRAConfig( replace_modules=LORA_TARGET_MODULES, rank=LORA_RANK, lora_alpha=LORA_ALPHA, lora_dropout=LORA_DROPOUT_P) logger.info(f'lora_config: {lora_config}') Swift.prepare_model(model, lora_config) # show_freeze_layers(model) print_model_info(model) _p = list(model.parameters())[100] logger.info(f'device: {_p.device}, dtype: {_p.dtype}') model.bfloat16() # ### Loading Dataset tokenize_function = partial(tokenize_function, tokenizer=tokenizer) train_dataset, val_dataset = get_alpaca_en_zh_dataset(tokenize_function) # Data analysis stat_dataset(train_dataset) stat_dataset(val_dataset) data_collate_fn = partial(data_collate_fn, tokenizer=tokenizer) print_examples(train_dataset[0], tokenizer) # ### Setting Config cfg_file = os.path.join(model_dir, 'configuration.json') # BATCH_SIZE = 1 MAX_EPOCHS = 1 T_max = get_T_max(len(train_dataset), BATCH_SIZE, MAX_EPOCHS, True) WORK_DIR = get_work_dir(WORK_DIR) EVAL_INTERVAL = 500 CONFIG = Config({ 'train': { 'dataloader': { 'batch_size_per_gpu': BATCH_SIZE, 'workers_per_gpu': 1, 'shuffle': True, 'drop_last': True, 'pin_memory': True }, 'max_epochs': MAX_EPOCHS, 'work_dir': WORK_DIR, 'optimizer': { 'type': 'AdamW', 'lr': 1e-4, 'weight_decay': 0.01, 'options': { 'cumulative_iters': 16, 'grad_clip': { 'norm_type': 2, 'max_norm': 2.0 } } }, 'lr_scheduler': { 'type': 'CosineAnnealingLR', 'T_max': T_max, 'eta_min': 1e-5, 'options': { 'by_epoch': False, 'warmup': { 'type': 'LinearWarmup', 'warmup_ratio': 0.1, 'warmup_iters': 200 } } }, 'hooks': [ { 'type': 'CheckpointHook', 'by_epoch': False, 'interval': EVAL_INTERVAL, 'max_checkpoint_num': 1 }, { 'type': 'EvaluationHook', 'by_epoch': False, 'interval': EVAL_INTERVAL }, { 'type': 'BestCkptSaverHook', 'metric_key': 'acc', 'save_best': True, 'rule': 'max', 'max_checkpoint_num': 1 }, { 'type': 'TextLoggerHook', 'by_epoch': True, # Whether EpochBasedTrainer is used 'interval': 5 }, { 'type': 'TensorboardHook', 'by_epoch': False, 'interval': 5 } ] }, 'evaluation': { 'dataloader': { 'batch_size_per_gpu': BATCH_SIZE, 'workers_per_gpu': 1, 'shuffle': False, 'drop_last': False, 'pin_memory': True }, 'metrics': [{ 'type': 'my_metric', 'vocab_size': tokenizer.vocab_size }] } }) # ### Finetuning def cfg_modify_fn(cfg: Config) -> Config: cfg.update(CONFIG) return cfg trainer = EpochBasedTrainer( model=model, cfg_file=cfg_file, data_collator=data_collate_fn, train_dataset=train_dataset, eval_dataset=val_dataset, remove_unused_data=True, seed=42, device='cpu', # No placement for model, leave the model to `device_map` cfg_modify_fn=cfg_modify_fn, ) trainer.train() # ### Visualization tb_dir = os.path.join(WORK_DIR, 'tensorboard_output') plot_image(tb_dir, ['loss'], 0.9)