import ast import datetime as dt import math import os import random import re import sys from typing import Any, Callable, Dict, List, Optional, Tuple, Union import matplotlib.pyplot as plt import numpy as np # import torch from matplotlib.figure import Figure from swift import LoRAConfig, Swift from tensorboard.backend.event_processing.event_accumulator import \ EventAccumulator from torch import Tensor from torch import device as Device from torch.nn import Module from torch.nn.utils.rnn import pad_sequence # from torchmetrics import Accuracy, MeanMetric # from tqdm import tqdm # from modelscope import Model, MsDataset, get_logger, read_config from modelscope.metrics.base import Metric from modelscope.metrics.builder import METRICS from modelscope.models.nlp.chatglm2 import ChatGLM2Tokenizer from modelscope.msdatasets.dataset_cls.custom_datasets import \ TorchCustomDataset from modelscope.utils.config import ConfigDict from modelscope.utils.registry import default_group # PROMPT = """System: {system} Human: {user} AI: """ MAX_LENGTH = 2048 TEST_MAX_LENGTH = MAX_LENGTH COLOR, COLOR_S = '#FFE2D9', '#FF7043' logger = get_logger() # def _get_version(work_dir: str) -> int: if os.path.isdir(work_dir): fnames = os.listdir(work_dir) else: fnames = [] v_list = [-1] for fname in fnames: m = re.match(r'v(\d+)', fname) if m is None: continue v = m.group(1) v_list.append(int(v)) return max(v_list) + 1 def get_work_dir(work_dir: str) -> str: """add version""" work_dir = os.path.abspath(work_dir) version = _get_version(work_dir) time = dt.datetime.now().strftime('%Y%m%d-%H%M%S') # work_dir = os.path.join(work_dir, f'v{version}-{time}') logger.info(f'work_dir: {work_dir}') return work_dir def _format_device(device: Union[List[int], str]) -> Tuple[List[int], str]: if isinstance(device, list): device_ids = device device_str = ','.join([str(d) for d in device]) else: device_ids = [int(d) for d in device.split(',') if d != '-1'] device_str = device device_str = device_str.replace(' ', '') return device_ids, device_str def select_device(device: Union[List[int], str]) -> Device: """Call this function before cuda is initialized. device: e.g. []: 'cpu', [0], [0, 1, 2] e.g. '-1': 'cpu', '0', '0,1,2' """ if torch.cuda.is_initialized(): logger.warning('CUDA has been initialized! Device selection fails!') return torch.device('cuda:0') # device_ids, device_str = _format_device(device) # os.environ['CUDA_VISIBLE_DEVICES'] = device_str log_s = 'Using device: ' if len(device_ids) == 0: master_device: str = 'cpu' log_s += 'cpu' else: assert torch.cuda.is_available( ) and torch.cuda.device_count() >= len(device_ids) master_device = 'cuda:0' log_s += f'cuda:{device_str}' logger.info(log_s) return torch.device(master_device) def seed_everything(seed: Optional[int] = None, gpu_dtm: bool = False) -> int: if seed is None: seed_max = np.iinfo(np.int32).max seed = random.randint(0, seed_max) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) logger.info(f'Global seed set to {seed}') if gpu_dtm: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False logger.info(f'Setting deterministic: {True}, benchmark: {False}') return seed def get_T_max(dataset_len: int, batch_size: int, max_epochs: int, drop_last: bool) -> int: """Calculate T_max in CosineAnnealingLR""" if drop_last: T_max = dataset_len // batch_size else: T_max = math.ceil(dataset_len / batch_size) T_max *= max_epochs return T_max def tokenize_function(system: str, user: str, assistant: Optional[str], tokenizer) -> Dict[str, Any]: """Only applicable to baichuan and chatglm2. Other models need to be tested""" src_text = PROMPT.format(system=system, user=user) src_input_ids: List[int] = tokenizer( src_text, return_attention_mask=False, add_special_tokens=True)['input_ids'] # tgt_input_ids: List[int] = [] if assistant is not None: tgt_input_ids += tokenizer( assistant, return_attention_mask=False, add_special_tokens=False)['input_ids'] tgt_input_ids += [tokenizer.eos_token_id] labels = [-100] * len(src_input_ids) + tgt_input_ids else: labels = None input_ids = src_input_ids + tgt_input_ids # if assistant is not None: if len(input_ids) > MAX_LENGTH: return {} else: input_ids = input_ids[-TEST_MAX_LENGTH:] # return {'input_ids': input_ids, 'labels': labels} class MyDataset(TorchCustomDataset): def __init__(self, system: List[str], user: List[str], assistant: List[str], tokenize_function) -> None: self._data = [] for i in tqdm(range(len(system))): _d = tokenize_function(system[i], user[i], assistant[i]) if len(_d) == 0: continue self._data.append(_d) def __getitem__(self, idx: int) -> Dict[str, Any]: return self._data[idx] def __len__(self) -> int: return len(self._data) def stat_dataset(dataset: 'MyDataset') -> None: """Statistical analysis was performed on the data set""" _token_len = [] for d in dataset: _token_len.append(len(d['input_ids'])) _token_len = np.array(_token_len) mean = _token_len.mean().item() std = _token_len.std().item() min_ = _token_len.min().item() max_ = _token_len.max().item() logger.info( f'Dataset Token Length: {mean:.6f}±{std:.6f}, min={min_:.6f}, max={max_:.6f}, size={_token_len.shape[0]}' ) def print_examples(examples: Dict[str, Any], tokenizer) -> None: input_ids, labels = examples['input_ids'], examples['labels'] print(f'[INPUT_IDS] {tokenizer.decode(input_ids)}') print() print( f'[LABELS] {tokenizer.decode([lb if lb != -100 else 0 for lb in labels])}' ) def data_collate_fn(batch: List[Dict[str, Any]], tokenizer) -> Dict[str, Any]: input_ids = [torch.tensor(b['input_ids']) for b in batch] labels = [torch.tensor(b['labels']) for b in batch] attention_mask = [ torch.ones(len(input_ids[i]), dtype=torch.int64) for i in range(len(input_ids)) ] # input_ids = pad_sequence( input_ids, batch_first=True, padding_value=tokenizer.pad_token_id) attention_mask = pad_sequence( attention_mask, batch_first=True, padding_value=0) labels = pad_sequence(labels, batch_first=True, padding_value=-100) return { 'input_ids': input_ids, 'attention_mask': attention_mask, 'labels': labels } def print_model_info(model: Module, name: Optional[str] = None) -> None: if name is None: name = model.__class__.__name__ # n_params = sum(p.numel() for p in model.parameters()) n_grads = sum(p.numel() for p in model.parameters() if p.requires_grad) n_buffers = sum(p.numel() for p in model.buffers()) # n_params /= 1e6 n_grads /= 1e6 n_buffers /= 1e6 s = [ f'{name}: ', f'{n_params:.4f}M Params ({n_grads:.4f}M Trainable), ', f'{n_buffers:.4f}M Buffers', ] s += '.' logger.info(''.join(s)) def show_freeze_layers(model: Module, max_lines: int = 20) -> None: named_p = list(model.named_parameters()) for i, (n, p) in enumerate(named_p): if i >= max_lines: logger.info('...') break logger.info(f'{n}: requires_grad={p.requires_grad}') @METRICS.register_module(group_key=default_group, module_name='my_metric') class MyMetric(Metric): def __init__(self, vocab_size: int): self.acc = Accuracy('multiclass', num_classes=vocab_size) self.loss = MeanMetric() def add(self, outputs: Dict[str, Any], inputs: Dict[str, Any]) -> None: loss: Tensor = outputs.loss self.loss.update(loss) # labels: Tensor = inputs['labels'] labels = labels[:, 1:] labels_mask = labels != -100 logits: Tensor = outputs.logits[:, :-1] logits = logits[labels_mask].contiguous().view(-1, logits.shape[-1]) pred = logits.argmax(dim=-1) labels = labels[labels_mask].to(logits.device) self.acc.update(pred, labels) def evaluate(self): return { 'acc': self.acc.compute().item(), 'loss': self.loss.compute().item() } def merge(self, other: 'MyMetric') -> None: """This script does not support ddp""" raise NotImplementedError def _add_special_token(tokenizer): if tokenizer.eos_token_id is None: tokenizer.eos_token_id = 2 if tokenizer.bos_token_id is None: tokenizer.bos_token_id = 1 if tokenizer.pad_token_id is None: tokenizer.pad_token_id = 0 logger.info(f'bos_token_id: {tokenizer.bos_token_id}, ' f'eos_token_id: {tokenizer.eos_token_id}, ' f'pad_token_id: {tokenizer.pad_token_id}') def get_baichuan7B_model_tokenizer(model_dir: str, load_model: bool = True, add_special_token: bool = True): sys.path.insert(0, model_dir) from configuration_baichuan import BaiChuanConfig from tokenization_baichuan import BaiChuanTokenizer from modeling_baichuan import BaiChuanForCausalLM model_config = BaiChuanConfig.from_pretrained(model_dir) model_config.torch_dtype = torch.float16 logger.info(f'model_config: {model_config}') tokenizer = BaiChuanTokenizer.from_pretrained(model_dir) model = None if load_model: model = BaiChuanForCausalLM.from_pretrained( model_dir, config=model_config, device_map='auto', torch_dtype=torch.float16) # if add_special_token: _add_special_token(tokenizer) return model, tokenizer def get_chatglm2_model_tokenizer(model_dir: str, load_model: bool = True, add_special_token: bool = True): config = read_config(model_dir) config['model'] = ConfigDict({'type': 'chatglm2-6b'}) tokenizer = ChatGLM2Tokenizer.from_pretrained(model_dir) model = None if load_model: model = Model.from_pretrained( model_dir, cfg_dict=config, device_map='auto', torch_dtype=torch.float16) if add_special_token: _add_special_token(tokenizer) return model, tokenizer def make_dataset( split: str, tokenize_function: Callable[[str, str, Optional[str]], Dict[str, Any]] ) -> MyDataset: """ split: Literal['train', 'validation'] """ dataset = MsDataset.load( 'modelscope/ms_hackathon_23_agent_train_dev', split=split) system = [] user = [] assistant = [] for d in dataset: content = ast.literal_eval(d['conversations']) s = content[0]['value'] assert len(content) % 2 == 1 for i in range(len(content) // 2): system.append(s) user.append(content[2 * i + 1]['value']) assistant.append(content[2 * i + 2]['value']) return MyDataset(system, user, assistant, tokenize_function) Item = Dict[str, float] def read_tensorboard_file(fpath: str) -> Dict[str, List[Item]]: if not os.path.isfile(fpath): raise FileNotFoundError(f'fpath: {fpath}') ea = EventAccumulator(fpath) ea.Reload() res = {} tags = ea.Tags()['scalars'] for tag in tags: values = ea.Scalars(tag) r = [] for v in values: r.append({'step': v.step, 'value': v.value}) res[tag] = r return res def tensorboard_smoothing(values: List[float], smooth: float = 0.9) -> List[float]: norm_factor = 1 x = 0 res = [] for i in range(len(values)): x = x * smooth + values[i] # Exponential decay res.append(x / norm_factor) # norm_factor *= smooth norm_factor += 1 return res def plot_image(data: Dict[str, List[Item]], key_name: str, smooth: float) -> Figure: _data = data[key_name] steps = [d['step'] for d in _data] values = [d['value'] for d in _data] fig, ax = plt.subplots(1, 1, squeeze=True, figsize=(8, 5), dpi=100) ax.set_title(key_name) if smooth != 0: ax.plot(steps, values, color=COLOR) values_s = tensorboard_smoothing(values, smooth) ax.plot(steps, values_s, color=COLOR_S) else: ax.plot(steps, values, color=COLOR_S) return fig