from dataclasses import dataclass, field from modelscope.metainfo import Trainers from modelscope.msdatasets import MsDataset from modelscope.trainers import EpochBasedTrainer, build_trainer from modelscope.trainers.training_args import TrainingArgs @dataclass class TextGenerationArguments(TrainingArgs): trainer: str = field( default=Trainers.default, metadata={ 'help': 'The trainer used', }) work_dir: str = field( default='./tmp', metadata={ 'help': 'The working path for saving checkpoint', }) src_txt: str = field( default=None, metadata={ 'help': 'The source text key of preprocessor', 'cfg_node': 'preprocessor.src_txt' }) tgt_txt: str = field( default=None, metadata={ 'help': 'The target text key of preprocessor', 'cfg_node': 'preprocessor.tgt_txt' }) preprocessor: str = field( default=None, metadata={ 'help': 'The preprocessor type', 'cfg_node': 'preprocessor.type' }) lr_scheduler: str = field( default=None, metadata={ 'help': 'The lr scheduler type', 'cfg_node': 'train.lr_scheduler.type' }) world_size: int = field( default=None, metadata={ 'help': 'The parallel world size', 'cfg_node': 'megatron.world_size' }) tensor_model_parallel_size: int = field( default=None, metadata={ 'help': 'The tensor model parallel size', 'cfg_node': 'megatron.tensor_model_parallel_size' }) def __call__(self, config): config = super().__call__(config) if config.train.lr_scheduler.type == 'noam': config.train.lr_scheduler = { 'type': 'LambdaLR', 'lr_lambda': noam_lambda, 'options': { 'by_epoch': False } } config.train.hooks.append({'type': 'MegatronHook'}) return config def noam_lambda(current_step: int): current_step += 1 return min(current_step**(-0.5), current_step * 100**(-1.5)) args = TextGenerationArguments.from_cli(task='text-generation') print(args) dataset = MsDataset.load(args.dataset_name) train_dataset = dataset['train'] eval_dataset = dataset['validation' if 'validation' in dataset else 'test'] kwargs = dict( model=args.model, train_dataset=train_dataset, eval_dataset=eval_dataset, seed=args.seed, work_dir=args.work_dir, cfg_modify_fn=args) trainer: EpochBasedTrainer = build_trainer( name=args.trainer, default_args=kwargs) trainer.train()