# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest from abc import ABCMeta import json import torch from torch import nn from torch.utils.data import Dataset from modelscope.trainers import build_trainer from modelscope.utils.constant import LogKeys, ModelFile class DummyDataset(Dataset, metaclass=ABCMeta): def __len__(self): return 20 def __getitem__(self, idx): return dict(feat=torch.rand((5, )), label=torch.randint(0, 4, (1, ))) class DummyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(5, 4) self.bn = nn.BatchNorm1d(4) def forward(self, feat, labels): x = self.linear(feat) x = self.bn(x) loss = torch.sum(x) return dict(logits=x, loss=loss) class CheckpointHookTest(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): super().tearDown() shutil.rmtree(self.tmp_dir) def test_checkpoint_hook(self): json_cfg = { 'task': 'image_classification', 'train': { 'work_dir': self.tmp_dir, 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1 }, 'optimizer': { 'type': 'SGD', 'lr': 0.01, 'options': { 'grad_clip': { 'max_norm': 2.0 } } }, 'lr_scheduler': { 'type': 'StepLR', 'step_size': 2, 'options': { 'warmup': { 'type': 'LinearWarmup', 'warmup_iters': 2 } } }, 'hooks': [{ 'type': 'CheckpointHook', 'interval': 1 }] } } config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) with open(config_path, 'w') as f: json.dump(json_cfg, f) trainer_name = 'EpochBasedTrainer' kwargs = dict( cfg_file=config_path, model=DummyModel(), data_collator=None, train_dataset=DummyDataset(), max_epochs=2) trainer = build_trainer(trainer_name, kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files) self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) if __name__ == '__main__': unittest.main()