PYTHONPATH=. python examples/pytorch/named_entity_recognition/finetune_named_entity_recognition.py \ --task 'named-entity-recognition' \ --work_dir './tmp' \ --model_type 'sequence-labeling-model' \ --model 'damo/nlp_structbert_backbone_base_std' \ --dropout 0.1 \ --use_crf true \ --train_dataset_name 'resume_ner' \ --train_dataset_namespace 'damo' \ --train_split 'train' \ --val_dataset_name 'resume_ner' \ --val_dataset_namespace 'damo' \ --val_split 'dev' \ --preprocessor 'sequence-labeling-preprocessor' \ --sequence_length 150 \ --data_collator 'SequenceLabelingDataCollatorWithPadding' \ --max_epochs 5 \ --per_device_train_batch_size 16 \ --train_data_worker 0 \ --eval_data_worker 0 \ --lr 5.0e-5 \ --lr_scheduler LinearLR \ --lr_scheduler_params 'start_factor=1.0,end_factor=0.0,total_iters=5' \ --eval_metrics ner-metric \ --save_best_checkpoint true \ --metric_for_best_model f1 \