# Copyright (c) Alibaba, Inc. and its affiliates. import unittest # NOTICE: Tensorflow 1.15 seems not so compatible with pytorch. # A segmentation fault may be raise by pytorch cpp library # if 'import tensorflow' in front of 'import torch'. # Puting a 'import torch' here can bypass this incompatibility. import torch from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger from modelscope.utils.test_utils import test_level import tensorflow as tf # isort:skip logger = get_logger() class TextToSpeechSambertHifigan16kPipelineTest(unittest.TestCase): def setUp(self) -> None: self.task = Tasks.text_to_speech self.zhcn_text = '今天北京天气怎么样' self.en_text = 'How is the weather in Beijing?' self.kokr_text = '오늘날씨가어때요' self.ru_text = 'Какая сегодня погода?' self.test_model_name = [ 'chuangirl', 'jiajia', 'xiaoda', 'kyong', 'masha', 'pretrain_16k', 'pretrain_24k', 'zhitian_emo', 'zhizhe_emo', 'zhiyan_emo', 'zhibei_emo', 'zhcn_16k', 'luca', 'luna', 'andy', 'annie', 'engb_16k', 'enus_16k' ] self.test_models = [{ 'model': 'speech_tts/speech_sambert-hifigan_tts_chuangirl_Sichuan_16k', 'text': self.zhcn_text }, { 'model': 'speech_tts/speech_sambert-hifigan_tts_jiajia_Cantonese_16k', 'text': self.zhcn_text }, { 'model': 'speech_tts/speech_sambert-hifigan_tts_xiaoda_WuuShanghai_16k', 'text': self.zhcn_text }, { 'model': 'speech_tts/speech_sambert-hifigan_tts_kyong_Korean_16k', 'text': self.kokr_text }, { 'model': 'speech_tts/speech_sambert-hifigan_tts_masha_Russian_16k', 'text': self.ru_text }, { 'model': 'speech_tts/speech_sambert-hifigan_tts_zh-cn_multisp_pretrain_16k', 'text': self.zhcn_text }, { 'model': 'speech_tts/speech_sambert-hifigan_tts_zh-cn_multisp_pretrain_24k', 'text': self.zhcn_text, }, { 'model': 'damo/speech_sambert-hifigan_tts_zhitian_emo_zh-cn_16k', 'text': self.zhcn_text }, { 'model': 'damo/speech_sambert-hifigan_tts_zhizhe_emo_zh-cn_16k', 'text': self.zhcn_text }, { 'model': 'damo/speech_sambert-hifigan_tts_zhiyan_emo_zh-cn_16k', 'text': self.zhcn_text }, { 'model': 'damo/speech_sambert-hifigan_tts_zhibei_emo_zh-cn_16k', 'text': self.zhcn_text }, { 'model': 'damo/speech_sambert-hifigan_tts_zh-cn_16k', 'text': self.zhcn_text }, { 'model': 'damo/speech_sambert-hifigan_tts_luca_en-gb_16k', 'text': self.en_text }, { 'model': 'damo/speech_sambert-hifigan_tts_luna_en-gb_16k', 'text': self.en_text }, { 'model': 'damo/speech_sambert-hifigan_tts_andy_en-us_16k', 'text': self.en_text }, { 'model': 'damo/speech_sambert-hifigan_tts_annie_en-us_16k', 'text': self.en_text }, { 'model': 'damo/speech_sambert-hifigan_tts_en-gb_16k', 'text': self.en_text }, { 'model': 'damo/speech_sambert-hifigan_tts_en-us_16k', 'text': self.en_text }] @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_pipeline(self): for i in range(len(self.test_models)): logger.info('test %s' % self.test_model_name[i]) sambert_hifigan_tts = pipeline( task=self.task, model=self.test_models[i]['model']) self.assertTrue(sambert_hifigan_tts is not None) output = sambert_hifigan_tts(input=self.test_models[i]['text']) self.assertIsNotNone(output[OutputKeys.OUTPUT_WAV]) wav = output[OutputKeys.OUTPUT_WAV] with open(f'output_{self.test_model_name[i]}', 'wb') as f: f.write(wav) if __name__ == '__main__': unittest.main()