# Copyright (c) Alibaba, Inc. and its affiliates. import unittest from modelscope.hub.snapshot_download import snapshot_download from modelscope.models import Model from modelscope.pipelines import pipeline from modelscope.pipelines.nlp import TextClassificationPipeline from modelscope.preprocessors import TextClassificationTransformersPreprocessor from modelscope.utils.constant import Tasks from modelscope.utils.regress_test_utils import IgnoreKeyFn, MsRegressTool from modelscope.utils.test_utils import test_level class NLITest(unittest.TestCase): def setUp(self) -> None: self.task = Tasks.nli self.model_id = 'damo/nlp_structbert_nli_chinese-base' self.model_id_fact_checking = 'damo/nlp_structbert_fact-checking_chinese-base' self.model_id_peer = 'damo/nlp_peer_mnli_english-base' sentence1 = '四川商务职业学院和四川财经职业学院哪个好?' sentence2 = '四川商务职业学院商务管理在哪个校区?' en_sentence1 = 'Conceptually cream skimming has two basic dimensions - product and geography.' en_sentence2 = 'Product and geography are what make cream skimming work.' regress_tool = MsRegressTool(baseline=False) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_direct_file_download(self): cache_path = snapshot_download(self.model_id) tokenizer = TextClassificationTransformersPreprocessor(cache_path) model = Model.from_pretrained(cache_path) pipeline1 = TextClassificationPipeline(model, preprocessor=tokenizer) pipeline2 = pipeline(Tasks.nli, model=model, preprocessor=tokenizer) print(f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n' f'pipeline1:{pipeline1(input=(self.sentence1, self.sentence2))}') print( f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n' f'pipeline1: {pipeline2(input=(self.sentence1, self.sentence2))}') @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_model_from_modelhub(self): model = Model.from_pretrained(self.model_id) tokenizer = TextClassificationTransformersPreprocessor(model.model_dir) pipeline_ins = pipeline( task=Tasks.nli, model=model, preprocessor=tokenizer) print(pipeline_ins(input=(self.sentence1, self.sentence2))) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_run_with_model_name(self): pipeline_ins = pipeline(task=Tasks.nli, model=self.model_id) with self.regress_tool.monitor_module_single_forward( pipeline_ins.model, 'sbert_nli', compare_fn=IgnoreKeyFn('.*intermediate_act_fn')): print(pipeline_ins(input=(self.sentence1, self.sentence2))) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_fact_checking_model(self): pipeline_ins = pipeline( task=Tasks.nli, model=self.model_id_fact_checking, model_revision='v1.0.1') print(pipeline_ins(input=(self.sentence1, self.sentence2))) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_peer_model(self): pipeline_ins = pipeline( task=Tasks.nli, model=self.model_id_peer, model_revision='v1.0.0', ) print(pipeline_ins(input=(self.en_sentence1, self.en_sentence2))) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_with_default_model(self): pipeline_ins = pipeline(task=Tasks.nli) print(pipeline_ins(input=(self.sentence1, self.sentence2))) if __name__ == '__main__': unittest.main()