# Copyright (c) Alibaba, Inc. and its affiliates. import unittest import numpy as np from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.test_utils import test_level class FaceRecognitionOodTest(unittest.TestCase): def setUp(self) -> None: self.task = Tasks.face_recognition self.model_id = 'damo/cv_ir_face-recognition-ood_rts' @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_face_compare(self): img1 = 'data/test/images/face_recognition_1.png' img2 = 'data/test/images/face_recognition_2.png' face_recognition = pipeline(self.task, model=self.model_id) result1 = face_recognition(img1) emb1 = result1[OutputKeys.IMG_EMBEDDING] result2 = face_recognition(img2) emb2 = result2[OutputKeys.IMG_EMBEDDING] if emb1 is None or emb2 is None: print('No Detected Face.') else: sim = np.dot(emb1[0], emb2[0]) score1 = result1[OutputKeys.SCORES][0][0] score2 = result2[OutputKeys.SCORES][0][0] print(f'Cos similarity={sim:.3f}, img1:{img1} img2:{img2}') print(f'OOD score: img1:{score1:.3f} img2:{score2:.3f}') if __name__ == '__main__': unittest.main()