import os import sys import types from dataclasses import dataclass, field from swift import LoRAConfig, Swift from transformers import AutoModelForCausalLM, AutoTokenizer from modelscope import (EpochBasedTrainer, MsDataset, TorchModel, TrainingArgs, build_dataset_from_file, snapshot_download) from modelscope.metainfo import Trainers from modelscope.preprocessors import TextGenerationTransformersPreprocessor from modelscope.trainers import build_trainer DEFAULT_PAD_TOKEN = '[PAD]' DEFAULT_EOS_TOKEN = '' DEFAULT_BOS_TOKEN = '' DEFAULT_UNK_TOKEN = '' @dataclass(init=False) class TextGenerationArguments(TrainingArgs): trainer: str = field( default=Trainers.default, metadata={ 'help': 'The trainer used', }) src_txt: str = field( default=None, metadata={ 'help': 'The source text key of preprocessor', 'cfg_node': 'preprocessor.src_txt' }) tgt_txt: str = field( default=None, metadata={ 'help': 'The target text key of preprocessor', 'cfg_node': 'preprocessor.tgt_txt' }) sequence_length: int = field( default=None, metadata={ 'help': 'The sequence length of preprocessor', 'cfg_node': 'preprocessor.sequence_length' }) lr_scheduler: str = field( default=None, metadata={ 'help': 'The lr scheduler type', 'cfg_node': 'train.lr_scheduler.type' }) bf16: bool = field( default=False, metadata={ 'help': 'Whether to use bf16', 'cfg_node': 'train.bf16' }) deepspeed: str = field( default=None, metadata={ 'help': 'The location of DeepSpeed json config file.', }) T_max: int = field( default=None, metadata={ 'help': 'The T_max for CosineAnnealingLR', 'cfg_node': 'train.lr_scheduler.T_max' }) use_lora: int = field( default=0, metadata={'help': 'Whether to use lora to train the model.'}, ) lora_rank: int = field( default=32, metadata={'help': 'The lora rank'}, ) lora_alpha: int = field( default=32, metadata={'help': 'The lora alpha'}, ) lora_dropout: float = field( default=0.05, metadata={'help': 'The lora dropout'}, ) device_map: str = field( default=None, metadata={ 'help': 'A map that specifies where each submodule should go.' }) def smart_tokenizer_and_embedding_resize(special_tokens_dict, tokenizer, model): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg config, args = TextGenerationArguments().parse_cli().to_config() print(config, args) pipeline_type = None def cfg_modify_fn(cfg): global pipeline_type pipeline_type = cfg.pipeline.type if args.use_model_config: cfg.merge_from_dict(config) else: cfg = config if 'hooks' not in cfg.train: cfg.train['hooks'] = [] if args.deepspeed: cfg.train.hooks.append({ 'type': 'DeepspeedHook', 'config': args.deepspeed, 'save_zero_checkpoint': True, 'with_mpu': False, }) return cfg def custom_save_pretrained(self, *args, **kwargs): config = kwargs.pop('config') if config is not None: config.pipeline = {'type': pipeline_type} TorchModel.save_pretrained(self, *args, config=config, **kwargs) if args.dataset_json_file is None: train_dataset = MsDataset.load( args.train_dataset_name, subset_name=args.train_subset_name, split=args.train_split, namespace=args.train_dataset_namespace) validation_dataset = MsDataset.load( args.val_dataset_name, subset_name=args.val_subset_name, split=args.val_split, namespace=args.val_dataset_namespace) else: train_dataset, validation_dataset = build_dataset_from_file( args.dataset_json_file) model_dir = snapshot_download(args.model) sys.path.append(model_dir) model = AutoModelForCausalLM.from_pretrained( model_dir, trust_remote_code=True, device_map=args.device_map) model.model_dir = model_dir model.save_pretrained = types.MethodType(custom_save_pretrained, model) cfg_file = os.path.join(model_dir, 'configuration.json') tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) special_tokens_dict = dict() if tokenizer.pad_token is None or tokenizer.pad_token == '': special_tokens_dict['pad_token'] = DEFAULT_PAD_TOKEN if tokenizer.eos_token is None or tokenizer.eos_token == '': special_tokens_dict['eos_token'] = DEFAULT_EOS_TOKEN if tokenizer.bos_token is None or tokenizer.bos_token == '': special_tokens_dict['bos_token'] = DEFAULT_BOS_TOKEN if tokenizer.unk_token is None or tokenizer.unk_token == '': special_tokens_dict['unk_token'] = DEFAULT_UNK_TOKEN smart_tokenizer_and_embedding_resize( special_tokens_dict=special_tokens_dict, tokenizer=tokenizer, model=model, ) preprocessor = TextGenerationTransformersPreprocessor( model_dir, tokenizer=tokenizer, src_txt=config.preprocessor.src_txt, tgt_txt=config.preprocessor.tgt_txt, sequence_length=getattr(config.preprocessor, 'sequence_length', None)) if args.use_lora != 0: lora_config = LoRAConfig( target_modules=['pack'], r=args.lora_rank, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout) model = model.bfloat16() model = Swift.prepare_model(model, lora_config) kwargs = dict( model=model, cfg_file=cfg_file, preprocessor=preprocessor, train_dataset=train_dataset, eval_dataset=validation_dataset, seed=args.seed, cfg_modify_fn=cfg_modify_fn) trainer: EpochBasedTrainer = build_trainer( name=args.trainer, default_args=kwargs) trainer.train()